Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hydrodynamic scene separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 18462 KB  
Article
Boundary SPH for Robust Particle–Mesh Interaction in Three Dimensions
by Ryan Kim and Paul M. Torrens
Algorithms 2024, 17(5), 218; https://doi.org/10.3390/a17050218 - 16 May 2024
Cited by 2 | Viewed by 2474
Abstract
This paper introduces an algorithm to tackle the boundary condition (BC) problem, which has long persisted in the numerical and computational treatment of smoothed particle hydrodynamics (SPH). Central to the BC problem is a need for an effective method to reconcile a numerical [...] Read more.
This paper introduces an algorithm to tackle the boundary condition (BC) problem, which has long persisted in the numerical and computational treatment of smoothed particle hydrodynamics (SPH). Central to the BC problem is a need for an effective method to reconcile a numerical representation of particles with 2D or 3D geometry. We describe and evaluate an algorithmic solution—boundary SPH (BSPH)—drawn from a novel twist on the mesh-based boundary method, allowing SPH particles to interact (directly and implicitly) with either convex or concave 3D meshes. The method draws inspiration from existing works in graphics, particularly discrete signed distance fields, to determine whether particles are intersecting or submerged with mesh triangles. We evaluate the efficacy of BSPH through application to several simulation environments of varying mesh complexity, showing practical real-time implementation in Unity3D and its high-level shader language (HLSL), which we test in the parallelization of particle operations. To examine robustness, we portray slip and no-slip conditions in simulation, and we separately evaluate convex and concave meshes. To demonstrate empirical utility, we show pressure gradients as measured in simulated still water tank implementations of hydrodynamics. Our results identify that BSPH, despite producing irregular pressure values among particles close to the boundary manifolds of the meshes, successfully prevents particles from intersecting or submerging into the boundary manifold. Average FPS calculations for each simulation scenario show that the mesh boundary method can still be used effectively with simple simulation scenarios. We additionally point the reader to future works that could investigate the effect of simulation parameters and scene complexity on simulation performance, resolve abnormal pressure values along the mesh boundary, and test the method’s robustness on a wider variety of simulation environments. Full article
(This article belongs to the Special Issue Geometric Algorithms and Applications)
Show Figures

Figure 1

13 pages, 13098 KB  
Article
Wave-Tracking in the Surf Zone Using Coastal Video Imagery with Deep Neural Networks
by Jinah Kim, Jaeil Kim, Taekyung Kim, Dong Huh and Sofia Caires
Atmosphere 2020, 11(3), 304; https://doi.org/10.3390/atmos11030304 - 21 Mar 2020
Cited by 19 | Viewed by 7475
Abstract
In this paper, we propose a series of procedures for coastal wave-tracking using coastal video imagery with deep neural networks. It consists of three stages: video enhancement, hydrodynamic scene separation and wave-tracking. First, a generative adversarial network, trained using paired raindrop and clean [...] Read more.
In this paper, we propose a series of procedures for coastal wave-tracking using coastal video imagery with deep neural networks. It consists of three stages: video enhancement, hydrodynamic scene separation and wave-tracking. First, a generative adversarial network, trained using paired raindrop and clean videos, is applied to remove image distortions by raindrops and to restore background information of coastal waves. Next, a hydrodynamic scene of propagated wave information is separated from surrounding environmental information in the enhanced coastal video imagery using a deep autoencoder network. Finally, propagating waves are tracked by registering consecutive images in the quality-enhanced and scene-separated coastal video imagery using a spatial transformer network. The instantaneous wave speed of each individual wave crest and breaker in the video domain is successfully estimated through learning the behavior of transformed and propagated waves in the surf zone using deep neural networks. Since it enables the acquisition of spatio-temporal information of the surf zone though the characterization of wave breakers inclusively wave run-up, we expect that the proposed framework with the deep neural networks leads to improve understanding of nearshore wave dynamics. Full article
(This article belongs to the Special Issue Waves and Wave Climate Analysis and Modeling)
Show Figures

Figure 1

Back to TopTop