Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = hybrid wireless mesh protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2539 KB  
Article
Centrality-Based Topology Control in Routing Protocols for Wireless Sensor Networks with Community Structure
by Juan Diego Belesaca, Andres Vazquez-Rodas, Cristihan Ruben Criollo and Luis J. de la Cruz Llopis
Electronics 2025, 14(19), 3812; https://doi.org/10.3390/electronics14193812 - 26 Sep 2025
Viewed by 1105
Abstract
Wireless sensor networks (WSNs) are key enablers of efficient communication in the Internet of Things (IoT) ecosystem. These networks comprise numerous sensor nodes that collaboratively collect and transmit data, requiring adaptive and energy-efficient management. However, high node density and resource limitations introduce challenges [...] Read more.
Wireless sensor networks (WSNs) are key enablers of efficient communication in the Internet of Things (IoT) ecosystem. These networks comprise numerous sensor nodes that collaboratively collect and transmit data, requiring adaptive and energy-efficient management. However, high node density and resource limitations introduce challenges such as control overhead, packet collisions, interference, and energy inefficiency. To mitigate these issues, this paper adopts the Hybrid Wireless Mesh Protocol (HWMP), standardized under IEEE 802.11s for wireless mesh networks (WMNs), as the routing protocol in WSNs. HWMP’s hybrid design combining reactive and proactive routing is well-suited for dynamic and mobile environments, making it applicable to WSNs operating under similar conditions. Building on this foundation, we propose a community-aware topology control mechanism that constructs a Connected Dominating Set (CDS) to serve as the network’s energy-efficient backbone. Node selection is guided by centrality metrics and detected community structures to enhance routing efficiency and network longevity. The mechanism is evaluated across six mobility scenarios characterized by realistic movement patterns. Comparative results show that incorporating community structure significantly improves routing performance and reduces energy consumption, validating the approach’s effectiveness in real-world WSN deployments. Full article
(This article belongs to the Special Issue Energy-Efficient Wireless Sensor Networks for IoT Applications)
Show Figures

Figure 1

16 pages, 5133 KB  
Article
A New Linear Model for the Calculation of Routing Metrics in 802.11s Using ns-3 and RStudio
by Juan Ochoa-Aldeán and Carlos Silva-Cárdenas
Computers 2023, 12(9), 172; https://doi.org/10.3390/computers12090172 - 28 Aug 2023
Cited by 1 | Viewed by 2008
Abstract
Wireless mesh networks (WMNs) offer a pragmatic solution with a cost-effective ratio when provisioning ubiquitous broadband internet access and diverse telecommunication systems. The conceptual underpinning of mesh networks finds application not only in IEEE networks, but also in 3GPP networks like LTE and [...] Read more.
Wireless mesh networks (WMNs) offer a pragmatic solution with a cost-effective ratio when provisioning ubiquitous broadband internet access and diverse telecommunication systems. The conceptual underpinning of mesh networks finds application not only in IEEE networks, but also in 3GPP networks like LTE and the low-power wide area network (LPWAN) tailored for the burgeoning Internet of Things (IoT) landscape. IEEE 802.11s is well known for its facto standard for WMN, which defines the hybrid wireless mesh protocol (HWMP) as a layer-2 routing protocol and airtime link (ALM) as a metric. In this intricate landscape, artificial intelligence (AI) plays a prominent role in the industry, particularly within the technology and telecommunication realms. This study presents a novel methodology for the computation of routing metrics, specifically the ALM. This methodology implements the network simulator ns-3 and the RStudio as a statistical computing environment for data analysis. The former has enabled for the creation of scripts that elicit a variety of scenarios for WMN where information is gathered and stored in databases. The latter (RStudio) takes this information, and at this point, two linear predictions are supported. The first uses linear models (lm) and the second employs general linear models (glm). To conclude this process, statistical tests are applied to the original model, as well as to the new suggested ones. This work substantially contributes in two ways: first, through the methodological tool for the metric calculation of the HWMP protocol that belongs to the IEEE 802.11s standard, using lm and glm for the selection and validation of the model regressors. At this stage the ANOVA and STEPWIZE tools of RStudio are used. The second contribution is a linear predictor that improves the WMN’s performance as a priori mechanism before the use of the ns-3 simulator. The ANCOVA tool of RStudio is employed in the latter. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

18 pages, 1569 KB  
Article
Efficient Communication Model for a Smart Parking System with Multiple Data Consumers
by T. Anusha and M. Pushpalatha
Smart Cities 2022, 5(4), 1536-1553; https://doi.org/10.3390/smartcities5040078 - 2 Nov 2022
Cited by 8 | Viewed by 5430
Abstract
A smart parking system (SPS) is an integral part of smart cities where Internet of Things (IoT) technology provides many innovative urban digital solutions. It offers hassle-free parking convenience to the city dwellers, metering facilities, and a revenue source for businesses, and it [...] Read more.
A smart parking system (SPS) is an integral part of smart cities where Internet of Things (IoT) technology provides many innovative urban digital solutions. It offers hassle-free parking convenience to the city dwellers, metering facilities, and a revenue source for businesses, and it also protects the environment by cutting down drive-around emissions. The real-time availability information of parking slots and the duration of occupancy are valuable data utilized by multiple sectors such as parking management, charging electric vehicles (EV), car servicing, urban infrastructure planning, traffic regulation, etc. IPv6 wireless mesh networks are a good choice to implement a fail-safe, low-power and Internet protocol (IP)-based secure communication infrastructure for connecting heterogeneous IoT devices. In a smart parking lot, there could be a variety of local IoT devices that consume the occupancy data generated from the parking sensors. For instance, there could be a central parking management system, ticketing booths, display boards showing a count of free slots and color-coded lights indicating visual clues for vacancy. Apart from this, there are remote user applications that access occupancy data from browsers and mobile phones over the Internet. Both the types of data consumers need not collect their inputs from the cloud, as it is beneficial to offer local data within the network. Hence, an SPS with multiple data consumers needs an efficient communication model that provides reliable data transfers among producers and consumers while minimizing the overall energy consumption and data transit time. This paper explores different SPS communication models by varying the number of occupancy data collators, their positions, hybrid power cycles and data aggregation strategies. In addition, it proposes a concise data format for effective data dissemination. Based on the simulation studies, a multi-collator model along with a data superimposition technique is found to be the best for realizing an efficient smart parking system. Full article
(This article belongs to the Topic IoT for Energy Management Systems and Smart Cities)
Show Figures

Figure 1

43 pages, 1619 KB  
Article
Adaptive Multi-Channel Clustering in IEEE 802.11s Wireless Mesh Networks
by Michael Rethfeldt, Tim Brockmann, Benjamin Beichler, Christian Haubelt and Dirk Timmermann
Sensors 2021, 21(21), 7215; https://doi.org/10.3390/s21217215 - 29 Oct 2021
Cited by 7 | Viewed by 5214
Abstract
WLAN mesh networks are one of the key technologies for upcoming smart city applications and are characterized by a flexible and low-cost deployment. The standard amendment IEEE 802.11s introduces low-level mesh interoperability at the WLAN MAC layer. However, scalability limitations imposed by management [...] Read more.
WLAN mesh networks are one of the key technologies for upcoming smart city applications and are characterized by a flexible and low-cost deployment. The standard amendment IEEE 802.11s introduces low-level mesh interoperability at the WLAN MAC layer. However, scalability limitations imposed by management traffic overhead, routing delays, medium contention, and interference are common issues in wireless mesh networks and also apply to IEEE 802.11s networks. Possible solutions proposed in the literature recommend a divide-and-conquer scheme that partitions the network into clusters and forms smaller collision and broadcast domains by assigning orthogonal channels. We present CHaChA (Clustering Heuristic and Channel Assignment), a distributed cross-layer approach for cluster formation and channel assignment that directly integrates the default IEEE 802.11s mesh protocol information and operating modes, retaining unrestricted compliance to the WLAN standard. Our concept proposes further mechanisms for dynamic cluster adaptation, including subsequent cluster joining, isolation and fault detection, and node roaming for cluster balancing. The practical performance of CHaChA is demonstrated in a real-world 802.11s testbed. We first investigate clustering reproducibility, duration, and communication overhead in static network scenarios of different sizes. We then validate our concepts for dynamic cluster adaptation, considering topology changes that are likely to occur during long-term network operation and maintenance. Full article
(This article belongs to the Special Issue IEEE 802.11 and Wireless Sensors Network)
Show Figures

Figure 1

26 pages, 10484 KB  
Article
Evaluation of VoIP QoS Performance in Wireless Mesh Networks
by Mohammad Tariq Meeran, Paul Annus, Muhammad Mahtab Alam and Yannick Le Moullec
Information 2017, 8(3), 88; https://doi.org/10.3390/info8030088 - 21 Jul 2017
Cited by 4 | Viewed by 7330
Abstract
The main focus of this research article is the evaluation of selected voice over Internet protocol (VoIP) solutions in wireless mesh network (WMN) scenarios. While WMNs have self-healing, self-forming, and dynamic topology features, they still pose challenges for the implementation of multimedia applications [...] Read more.
The main focus of this research article is the evaluation of selected voice over Internet protocol (VoIP) solutions in wireless mesh network (WMN) scenarios. While WMNs have self-healing, self-forming, and dynamic topology features, they still pose challenges for the implementation of multimedia applications such as voice in various scenarios. Therefore, various solutions to make WMN more suitable for VoIP application have been proposed in the scientific literature. In this work, we have extensively explored a set of applicable scenarios by conducting experiments by means of a network simulator. The following scenarios were selected as the most representatives for performance evaluation: first responders, flooded village, remote village, and platoon deployment. Each selected scenario has been studied under six sub-scenarios corresponding to various combinations of the IEEE 802.11g, 802.11n, 802.11s, and 802.11e standards; the G.711 and G.729 codecs; and the ad hoc on demand distance vector (AODV) and hybrid wireless mesh protocol (HWMP) routing protocols. The results in terms of quality of service (measured with the mean opinion score rating scale), supported by the analysis of delay, jitter and packet loss, show that 802.11g integration with both VoIP codecs and AODV routing protocol results in better VoIP performance as compared to most other scenarios. In case of 802.11g integration with 802.11s, VoIP performance decreases as compared to the other sub-scenarios without 802.11s. The results also show that 802.11n integration with 802.11e decreases VoIP performance in larger deployments. We conclude the paper with some recommendations in terms of combinations of those standards and protocols with a view to achieve a higher quality of service for the given scenarios. Full article
(This article belongs to the Section Information Applications)
Show Figures

Figure 1

33 pages, 502 KB  
Article
A Security Analysis of the 802.11s Wireless Mesh Network Routing Protocol and Its Secure Routing Protocols
by Whye Kit Tan, Sang-Gon Lee, Jun Huy Lam and Seong-Moo Yoo
Sensors 2013, 13(9), 11553-11585; https://doi.org/10.3390/s130911553 - 2 Sep 2013
Cited by 16 | Viewed by 9678
Abstract
Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is [...] Read more.
Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

28 pages, 817 KB  
Article
A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks
by Nenad Kojić, Irini Reljin and Branimir Reljin
Sensors 2012, 12(6), 7548-7575; https://doi.org/10.3390/s120607548 - 7 Jun 2012
Cited by 18 | Viewed by 8902
Abstract
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users [...] Read more.
The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Back to TopTop