Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hybrid gel fiber membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8329 KiB  
Article
Novel Hybrid Gel–Fiber Membranes as Carriers for Lipase Catalysis Based on Electrospinning and Gelation Technology
by Shumiao Lin, Qianqian Zhang, Ziheng Wang and Jinlong Li
Gels 2024, 10(1), 74; https://doi.org/10.3390/gels10010074 - 18 Jan 2024
Cited by 2 | Viewed by 1817
Abstract
An excellent oil–water interface is one of the prerequisites for effective lipase catalysis. Therefore, this study aimed to improve lipase activity in terms of catalytic interface optimization. A novel approach for constructing oil–water interfaces was proposed. The structural similarity and the hydrophilic differences [...] Read more.
An excellent oil–water interface is one of the prerequisites for effective lipase catalysis. Therefore, this study aimed to improve lipase activity in terms of catalytic interface optimization. A novel approach for constructing oil–water interfaces was proposed. The structural similarity and the hydrophilic differences between polyvinyl pyrrolidone gel–fiber membranes (GFMs) and poly(lauryl methacrylate) (PLMA) organogel inspired us to hybridize the two to form PVP/PLMA hybrid gel–fiber membranes (HGFMs) based on electrospinning and gelation. The prepared PVP/PLMA-HGFMs were capable of being adopted as novel carriers for lipase catalysis due to their ability to swell both in the aqueous phase (swelling ratio = 187.5%) and the organic phase (swelling ratio = 40.5%). Additionally, Confocal laser scanning microscopy (CLSM) results showed that abundant network pores inside the carriers enabled numerous effective microscopic oil–water interfaces. The catalytic activity of Burkholderia cepacia lipase (BCL) in PVP/PLMA-HGFMs ranged between 1.21 and 8.70 times that of the control (“oil-up/water-down” system) under different experimental conditions. Meanwhile, PVP/PLMA-HGFMs increased lipase activity by about eight times at −20 °C and had good application characteristics at extreme pH conditions. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

13 pages, 12173 KiB  
Article
Construction of a Novel Lipase Catalytic System Based on Hybrid Membranes with Interwoven Electrospun Polyacrylic Acid and Polyvinyl Pyrrolidone Gel Fibers
by Ziheng Wang, Shumiao Lin, Qianqian Zhang, Jinlong Li and Sheng Yin
Gels 2022, 8(12), 812; https://doi.org/10.3390/gels8120812 - 10 Dec 2022
Cited by 2 | Viewed by 2491
Abstract
Efficient lipase catalysis requires sufficient oil–water interface engineered through structural design. Inspired by the architectural features of fabrics, a novel lipase-membrane catalytic system with interwoven polyacrylic acid (PAA) gel fibers and polyvinyl pyrrolidone (PVP) gel fibers was developed in this study by using [...] Read more.
Efficient lipase catalysis requires sufficient oil–water interface engineered through structural design. Inspired by the architectural features of fabrics, a novel lipase-membrane catalytic system with interwoven polyacrylic acid (PAA) gel fibers and polyvinyl pyrrolidone (PVP) gel fibers was developed in this study by using double-needle electrospinning and gelation. It has been demonstrated that PAA/PVP hybrid gel fiber membranes (HGFMs) have a high swelling capacity for both water and oil phases, which created numerous discontinuous oil–water contact surface units in limited space of HGFMs, consequently forming effective interfacial catalytic systems. Volume competition between the water and oil phases suggests that balancing the proportions of these phases is very important for effective construction of oil–water interfaces and conditioning catalysis. Regulation of multiple factors of PAA/PVP HGFMs resulted in a catalytic efficiency of up to 2.1 times that of a macroscopic “oil-up/water-down” system (room temperature, pH = 7), and 2.9 times when three membranes are superimposed, as well as excellent pH and temperature stability. HGFMs were stacked to build a high-performing catalytic performance reactor. We expect that this study will be a beneficial exploration for expanding the lipase catalytic system. Full article
Show Figures

Graphical abstract

26 pages, 47156 KiB  
Review
Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring
by Bárbara R. Gomes, Rui Araújo, Tatiana Sousa and Rita B. Figueira
Coatings 2021, 11(10), 1245; https://doi.org/10.3390/coatings11101245 - 13 Oct 2021
Cited by 6 | Viewed by 5080
Abstract
The use of advanced sensing devices for concrete and reinforced concrete structures (RCS) is considered a rational approach for the assessment of repair options and scheduling of inspection and maintenance strategies. The immediate benefits are cost reduction and a reliable prevention of unpredictable [...] Read more.
The use of advanced sensing devices for concrete and reinforced concrete structures (RCS) is considered a rational approach for the assessment of repair options and scheduling of inspection and maintenance strategies. The immediate benefits are cost reduction and a reliable prevention of unpredictable events. The use of optical fiber sensors (OFS) for such purposes has increased considerably in the last few years due to their intrinsic advantages. In most of the OFS, the chemical transducer consists of immobilized chemical reagents placed in the sensing region of the optical sensor by direct deposition or by encapsulation in a polymeric matrix. The choice of the support matrix impacts directly on the performance of the OFS. In the last two decades, the development of OFS functionalized with organic–inorganic hybrid (OIH) sol–gel membranes have been reported. Sol–gel route is considered a simple method that offers several advantages when compared to traditional synthesis processes, allowing to obtain versatile materials with unique chemical and physical properties, and is particularly valuable in the design of OIH materials. This review will provide an update of the current state-of-the-art of the OFS based on OIH sol-gel materials for concrete and RCS since 2016 until mid-2021. The main achievements in the synthesis of OIH membranes for deposition on OFS will be discussed. The challenges and future directions in this field will also be considered, as well as the main limitations of OFS for RCS monitoring. Full article
Show Figures

Figure 1

27 pages, 2036 KiB  
Review
Fabric Phase Sorptive Extraction: A Paradigm Shift Approach in Analytical and Bioanalytical Sample Preparation
by Abuzar Kabir and Victoria Samanidou
Molecules 2021, 26(4), 865; https://doi.org/10.3390/molecules26040865 - 6 Feb 2021
Cited by 78 | Viewed by 6090
Abstract
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent [...] Read more.
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation approach which was introduced in 2014, meeting all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol–gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol–gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. In addition to the extensive simplification of the sample preparation workflow, FPSE has also innovatively combined the extraction principle of two major, yet competing sample preparation techniques: solid phase extraction (SPE) with its characteristic exhaustive extraction, and solid phase microextraction (SPME) with its characteristic equilibrium driven extraction mechanism. Furthermore, FPSE has offered the most comprehensive cache of sorbent chemistry by successfully combining almost all of the sorbents traditionally used exclusively in either SPE or in SPME. FPSE is the first sample preparation technique to exploit the substrate surface chemistry that complements the overall selectivity and the extraction efficiency of the device. As such, FPSE indeed represents a paradigm shift approach in analytical/bioanalytical sample preparation. Furthermore, an FPSE membrane can be used as an SPME fiber or as an SPE disk for sample preparation, owing to its special geometric advantage. So far, FPSE has overwhelmingly attracted the interest of the separation scientist community, and many analytical scientists have been developing new methodologies by implementing this cutting-edge technique for the extraction and determination of many analytes at their trace and ultra-trace level concentrations in environmental samples as well as in food, pharmaceutical, and biological samples. FPSE offers a total sample preparation solution by providing neutral, cation exchanger, anion exchanger, mixed mode cation exchanger, mixed mode anion exchanger, zwitterionic, and mixed mode zwitterionic sorbents to deal with any analyte regardless of its polarity, ionic state, or the sample matrix where it resides. Herein we present the theoretical background, synthesis, mechanisms of extraction and desorption, the types of sorbents, and the main applications of FPSE so far according to different sample categories, and to briefly show the progress, advantages, and the main principles of the proposed technique. Full article
Show Figures

Figure 1

Back to TopTop