Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hybrid double-LCC topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1338 KiB  
Article
Parameter Estimation-Based Output Voltage or Current Regulation for Double-LCC Hybrid Topology in Wireless Power Transfer Systems
by Thaís M. Tolfo, Rafael de S. Silva, Ruben B. Godoy, Moacyr A. G. de Brito and Witória S. de Souza
Energies 2025, 18(10), 2664; https://doi.org/10.3390/en18102664 - 21 May 2025
Viewed by 312
Abstract
In Wireless Power Transfer Systems (WPTS), variations in a load connected to a receiver can cause instability in the waveforms of output voltage and current due to their sensitivity to changes in load impedance. To overcome such drawbacks, this paper presents a control [...] Read more.
In Wireless Power Transfer Systems (WPTS), variations in a load connected to a receiver can cause instability in the waveforms of output voltage and current due to their sensitivity to changes in load impedance. To overcome such drawbacks, this paper presents a control scheme for regulating voltage and current at the output of a WPTS system with the Double-LCC topology. The proposed method is based on estimating secondary-side parameters while assuming a constant coupling coefficient that remains close to its intended value during operation. The methodology begins with the mathematical modeling of the primary and secondary resonant circuits. By measuring the input voltage and current, the system estimates the load impedance, which is then used to derive the expected output voltage and a reference for the input voltage. To maintain a stable output, the system dynamically adjusts the input voltage, ensuring that it aligns with the theoretical reference value. Analytical calculations and simulations were performed using the MATLAB/Simulink platform to validate the proposed approach. Simulations confirmed the theoretical predictions for a wireless system operating at 120 kHz with a power transfer of 100 W. The results demonstrated that the load voltage remains stable at 32 V, even under varying load conditions, while the output current remains at 3 A despite fluctuations in battery voltage. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

18 pages, 4493 KiB  
Article
A Hybrid Inductive Power Transfer System with High Misalignment Tolerance Using Double-DD Quadrature Pads
by Zhaowei Gong, Jingang Li, Xiangqian Tong and Yongsheng Fu
Electronics 2022, 11(14), 2228; https://doi.org/10.3390/electronics11142228 - 17 Jul 2022
Cited by 4 | Viewed by 1851
Abstract
Inductive power transfer (IPT) has been widely adopted as an efficient and convenient charging manner for both static and in-motion EVs. In this paper, a new hybrid topology is presented to improve the coupling tolerance under pad misalignment. The double inductor–capacitor–capacitor (LCC-LCC) network [...] Read more.
Inductive power transfer (IPT) has been widely adopted as an efficient and convenient charging manner for both static and in-motion EVs. In this paper, a new hybrid topology is presented to improve the coupling tolerance under pad misalignment. The double inductor–capacitor–capacitor (LCC-LCC) network and series hybrid network combining the LCC-LCC topology and series-series (SS) topology are connected in parallel to provide better tolerance against self- and mutual inductance changes, particularly with a large Z-axis transmission distance. A double-DD quadrature pad (DD2Q) consists of a Q pad, and double orthogonal DD pads are analyzed in detail, which are employed to decouple the cross-mutual inductance. Moreover, a parametric design method based on the misalignment characteristics of the DD2Q pads is also proposed to maintain relatively constant power output. A 650-W hybrid topology with a fixed operating frequency of 85 kHz was built to verify the system’s feasibility. The size of the DD2Q pads was 280 mm × 280 mm, and the air gap was 100 mm. The results clearly show that the proposed hybrid topology can achieve a fluctuation within 5% in the output current with load varying from 100% full load to 25% light load conditions when the Z-axis transmission distance varies from 80 mm to 150 mm, and the maximum efficiency can reach 91% when the Z-axis transmission distance is 80 mm. Full article
Show Figures

Figure 1

11 pages, 5395 KiB  
Article
A Switched Capacitor-Based Single Switch Circuit with Load-Independent Output for Wireless Power Transfer
by Bo Pan, Houji Li, Yong Wang and Jianqiang Li
Electronics 2022, 11(9), 1400; https://doi.org/10.3390/electronics11091400 - 27 Apr 2022
Cited by 2 | Viewed by 2479
Abstract
Double-sided Inductor–Capacitor–Capacitor (LCC) or hybrid compensation network is often used in the traditional methods to realize load-independent output in wireless power transfer; however, these methods require the changes of operating frequency or compensation network, and the adoption of more switches and components, resulting [...] Read more.
Double-sided Inductor–Capacitor–Capacitor (LCC) or hybrid compensation network is often used in the traditional methods to realize load-independent output in wireless power transfer; however, these methods require the changes of operating frequency or compensation network, and the adoption of more switches and components, resulting in the reduction in the reliability of the system. In this article, a single switch topology using a switched capacitor was proposed, which can realize load-independent output characteristics by only switching the branch once, characterized by the strength of fewer components, simple control, and high reliability. The analysis of this topology and the accurate parameter design method were given, and the sensitivity analysis was also carried out. Finally, a 180 W wireless charging prototype with 60 V/3 A was built using the proposed topology, which confirmed the accuracy of model analysis and the practical feasibility of the proposed strategies. Full article
Show Figures

Figure 1

13 pages, 8720 KiB  
Article
Reconfigurable Hybrid Resonant Topology for Constant Current/Voltage Wireless Power Transfer of Electric Vehicles
by Sang-Hoon Hwang, Yafei Chen, Hailong Zhang, Kang-Yoon Lee and Dong-Hee Kim
Electronics 2020, 9(8), 1323; https://doi.org/10.3390/electronics9081323 - 16 Aug 2020
Cited by 17 | Viewed by 4354
Abstract
This paper proposes a reconfigurable hybrid topology (RHT) for the constant current (CC)/constant voltage (CV) charging of electric vehicles. The proposed system combines the series–series and the inductor and double capacitors-series topologies. Two AC switches (ACSs) are utilized to change the CC and [...] Read more.
This paper proposes a reconfigurable hybrid topology (RHT) for the constant current (CC)/constant voltage (CV) charging of electric vehicles. The proposed system combines the series–series and the inductor and double capacitors-series topologies. Two AC switches (ACSs) are utilized to change the CC and CV charging modes, without requiring an additional resonant network. A detailed analysis for designing the hybrid topology parameters is also presented; a three-kilowatt prototype was configured based on this analysis in order to validate the proposed system. The constructed prototype confirmed the stable mode changes, load fluctuations, CC/CV output characteristics and efficiency of the proposed system. The maximum efficiency of the proposed RHT was found to be 92.58%. Full article
(This article belongs to the Special Issue Emerging Technologies for Wireless Power Transfer in Transportation)
Show Figures

Figure 1

Back to TopTop