Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = hyaluronan-related enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 815 KiB  
Review
Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling
by Melanie A. Simpson
Cells 2025, 14(2), 139; https://doi.org/10.3390/cells14020139 - 18 Jan 2025
Cited by 1 | Viewed by 1268
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular [...] Read more.
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight. Full article
(This article belongs to the Special Issue Role of Hyaluronan in Human Health and Disease)
Show Figures

Figure 1

13 pages, 2542 KiB  
Article
Study on the Skincare Effects of Red Rice Fermented by Aspergillus oryzae In Vitro
by Mo Chen, Yi Sun, Le Zhu, Lingyu Li and Ya Zhao
Molecules 2024, 29(9), 2066; https://doi.org/10.3390/molecules29092066 - 30 Apr 2024
Cited by 6 | Viewed by 3850
Abstract
Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on [...] Read more.
Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA’s composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA’s constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA’s anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications. Full article
Show Figures

Figure 1

23 pages, 22985 KiB  
Article
Effects of Radiation-Induced Skin Injury on Hyaluronan Degradation and Its Underlying Mechanisms
by Jiahui Dong, Boyuan Ren, Yunfei Tian, Guanqun Peng, Huiting Zhai, Zhiyun Meng, Ruolan Gu, Hui Gan, Zhuona Wu, Yunbo Sun, Guifang Dou and Shuchen Liu
Molecules 2023, 28(21), 7449; https://doi.org/10.3390/molecules28217449 - 6 Nov 2023
Cited by 2 | Viewed by 2583
Abstract
Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it [...] Read more.
Radiation-induced skin injury (RISI) is a frequent and severe complication with a complex pathogenesis that often occurs during radiation therapy, nuclear incidents, and nuclear war, for which there is no effective treatment. Hyaluronan (HA) plays an overwhelming role in the skin, and it has been shown that UVB irradiation induces increased HA expression. Nevertheless, to the best of our knowledge, there has been no study regarding the biological correlation between RISI and HA degradation and its underlying mechanisms. Therefore, in our study, we investigated low-molecular-weight HA content using an enzyme-linked immunosorbent assay and changes in the expression of HA-related metabolic enzymes using real-time quantitative polymerase chain reaction and a Western blotting assay. The oxidative stress level of the RISI model was assessed using sodium dismutase, malondialdehyde, and reactive oxygen species assays. We demonstrated that low-molecular-weight HA content was significantly upregulated in skin tissues during the late phase of irradiation exposure in the RISI model and that HA-related metabolic enzymes, oxidative stress levels, the MEK5/ERK5 pathway, and inflammatory factors were consistent with changes in low-molecular-weight HA content. These findings prove that HA degradation is biologically relevant to RISI development and that the HA degradation mechanisms are related to HA-related metabolic enzymes, oxidative stress, and inflammatory factors. The MEK5/ERK5 pathway represents a potential mechanism of HA degradation. In conclusion, we aimed to investigate changes in HA content and preliminarily investigate the HA degradation mechanism in a RISI model under γ-ray irradiation, to consider HA as a new target for RISI and provide ideas for novel drug development. Full article
Show Figures

Figure 1

15 pages, 3795 KiB  
Article
Multidose Hyaluronidase Administration as an Optimal Procedure to Degrade Resilient Hyaluronic Acid Soft Tissue Fillers
by Killian Flégeau, Jing Jing, Romain Brusini, Mélanie Gallet, Capucine Moreno, Lee Walker, François Bourdon and Jimmy Faivre
Molecules 2023, 28(3), 1003; https://doi.org/10.3390/molecules28031003 - 19 Jan 2023
Cited by 12 | Viewed by 6402
Abstract
Minimally invasive hyaluronan (HA) tissue fillers are routinely employed to provide tissue projection and correct age-related skin depressions. HA fillers can advantageously be degraded by hyaluronidase (HAase) administration in case of adverse events. However, clear guidelines regarding the optimal dosage and mode of [...] Read more.
Minimally invasive hyaluronan (HA) tissue fillers are routinely employed to provide tissue projection and correct age-related skin depressions. HA fillers can advantageously be degraded by hyaluronidase (HAase) administration in case of adverse events. However, clear guidelines regarding the optimal dosage and mode of administration of HAase are missing, leaving a scientific gap for practitioners in their daily practice. In this study, we implemented a novel rheological procedure to rationally evaluate soft tissue filler degradability and optimize their degradation kinetics. TEOSYAL RHA® filler degradation kinetics in contact with HAase was monitored in real-time by rheological time sweeps. Gels were shown to degrade as a function of enzymatic activity, HA concentration, and BDDE content, with a concomitant loss of their viscoelastic properties. We further demonstrated that repeated administration of small HAase doses improved HA degradation kinetics over large single doses. Mathematical analyses were developed to evaluate the degradation potential of an enzyme. Finally, we tuned the optimal time between injections and number of enzymatic units, maximizing degradation kinetics. In this study, we have established a scientific rationale for the degradation of HA fillers by multidose HAase administration that could serve as a basis for future clinical management of adverse events. Full article
(This article belongs to the Special Issue Hyaluronan)
Show Figures

Figure 1

10 pages, 1213 KiB  
Article
Ovarian Cancer-Cell Pericellular Hyaluronan Deposition Negatively Impacts Prognosis of Ovarian Cancer Patients
by Leticia Oliveira-Ferrer, Barbara Schmalfeldt, Johannes Dietl, Catharina Bartmann, Udo Schumacher and Christine Stürken
Biomedicines 2022, 10(11), 2944; https://doi.org/10.3390/biomedicines10112944 - 16 Nov 2022
Cited by 9 | Viewed by 2656
Abstract
Background: Hyaluronan (HA), a component of the extracellular matrix, is frequently increased under pathological conditions including cancer. Not only stroma cells but also cancer cells themselves synthesize HA, and the interaction of HA with its cognate receptors promotes malignant progression and metastasis. Methods: [...] Read more.
Background: Hyaluronan (HA), a component of the extracellular matrix, is frequently increased under pathological conditions including cancer. Not only stroma cells but also cancer cells themselves synthesize HA, and the interaction of HA with its cognate receptors promotes malignant progression and metastasis. Methods: In the present study, HA deposition in tissue sections was analyzed by hyaluronan-binding protein (HABP) ligand histochemistry in 17 borderline tumors and 102 primary and 20 recurrent ovarian cancer samples. The intensity and, particularly, localization of the HA deposition were recorded: for the localization, the pericellular deposition around the ovarian cancer cells was distinguished from the deposition within the stromal compartment. These histochemical data were correlated with clinical and pathological parameters. Additionally, within a reduced subgroup of ovarian cancer samples (n = 70), the RNA levels of several HA-associated genes were correlated with the HA localization and intensity. Results: Both stroma-localized and pericellular tumor-cell-associated HA deposition were observed. Cancer-cell pericellular HA deposition, irrespective of its staining intensity, was significantly associated with malignancy, and in the primary ovarian cancer cohort, it represents an independent unfavorable prognostic marker for overall survival. Furthermore, a significant association between high CD44, HAS2 and HAS3 mRNA levels and a cancer-cell pericellular HA-deposition pattern was noted. In contrast, stromal hyaluronan deposition had no impact on ovarian cancer prognosis. Conclusions: In conclusion, the site of HA deposition is of prognostic value, but the amount deposited is not. The significant association of only peritumoral cancer-cell HA deposition with high CD44 mRNA expression levels suggests a pivotal role of the CD44–HA signaling axis for malignant progression in ovarian cancer. Full article
(This article belongs to the Special Issue Advances in Therapeutic Strategies in Gynecological Malignant Tumors)
Show Figures

Figure 1

18 pages, 1618 KiB  
Article
Effluent Molecular Analysis Guides Liver Graft Allocation to Clinical Hypothermic Oxygenated Machine Perfusion
by Caterina Lonati, Andrea Schlegel, Michele Battistin, Riccardo Merighi, Margherita Carbonaro, Paola Dongiovanni, Patrizia Leonardi, Alberto Zanella and Daniele Dondossola
Biomedicines 2021, 9(10), 1444; https://doi.org/10.3390/biomedicines9101444 - 11 Oct 2021
Cited by 11 | Viewed by 2485
Abstract
Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons’ subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve [...] Read more.
Hypothermic-oxygenated-machine-perfusion (HOPE) allows assessment/reconditioning of livers procured from high-risk donors before transplantation. Graft referral to HOPE mostly depends on surgeons’ subjective judgment, as objective criteria are still insufficient. We investigated whether analysis of effluent fluids collected upon organ flush during static-cold-storage can improve selection criteria for HOPE utilization. Effluents were analyzed to determine cytolysis enzymes, metabolites, inflammation-related mediators, and damage-associated-molecular-patterns. Molecular profiles were assessed by unsupervised cluster analysis. Differences between “machine perfusion (MP)-yes” vs. “MP-no”; “brain-death (DBD) vs. donation-after-circulatory-death (DCD)”; “early-allograft-dysfunction (EAD)-yes” vs. “EAD-no” groups, as well as correlation between effluent variables and transplantation outcome, were investigated. Livers assigned to HOPE (n = 18) showed a different molecular profile relative to grafts transplanted without this procedure (n = 21, p = 0.021). Increases in the inflammatory mediators PTX3 (p = 0.048), CXCL8/IL-8 (p = 0.017), TNF-α (p = 0.038), and ANGPTL4 (p = 0.010) were observed, whereas the anti-inflammatory cytokine IL-10 was reduced (p = 0.007). Peculiar inflammation, cell death, and coagulation signatures were observed in fluids collected from DCD livers compared to those from DBD grafts. AST (p = 0.034), ALT (p = 0.047), and LDH (p = 0.047) were higher in the “EAD-yes” compared to the “EAD-no” group. Cytolysis markers and hyaluronan correlated with recipient creatinine, AST, and ICU stay. The study demonstrates that effluent molecular analysis can provide directions about the use of HOPE. Full article
Show Figures

Figure 1

17 pages, 2440 KiB  
Article
Matrix Remodeling and Hyaluronan Production by Myofibroblasts and Cancer-Associated Fibroblasts in 3D Collagen Matrices
by Jiranuwat Sapudom, Claudia Damaris Müller, Khiet-Tam Nguyen, Steve Martin, Ulf Anderegg and Tilo Pompe
Gels 2020, 6(4), 33; https://doi.org/10.3390/gels6040033 - 30 Sep 2020
Cited by 30 | Viewed by 6626
Abstract
The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance [...] Read more.
The tumor microenvironment is a key modulator in cancer progression and has become a novel target in cancer therapy. An increase in hyaluronan (HA) accumulation and metabolism can be found in advancing tumor progression and are often associated with aggressive malignancy, drug resistance and poor prognosis. Wound-healing related myofibroblasts or activated cancer-associated fibroblasts (CAF) are assumed to be the major sources of HA. Both cell types are capable to synthesize new matrix components as well as reorganize the extracellular matrix. However, to which extent myofibroblasts and CAF perform these actions are still unclear. In this work, we investigated the matrix remodeling and HA production potential in normal human dermal fibroblasts (NHFB) and CAF in the absence and presence of transforming growth factor beta -1 (TGF-β1), with TGF-β1 being a major factor of regulating fibroblast differentiation. Three-dimensional (3D) collagen matrix was utilized to mimic the extracellular matrix of the tumor microenvironment. We found that CAF appeared to response insensitively towards TGF-β1 in terms of cell proliferation and matrix remodeling when compared to NHFB. In regards of HA production, we found that both cell types were capable to produce matrix bound HA, rather than a soluble counterpart, in response to TGF-β1. However, activated CAF demonstrated higher HA production when compared to myofibroblasts. The average molecular weight of produced HA was found in the range of 480 kDa for both cells. By analyzing gene expression of HA metabolizing enzymes, namely hyaluronan synthase (HAS1-3) and hyaluronidase (HYAL1-3) isoforms, we found expression of specific isoforms in dependence of TGF-β1 present in both cells. In addition, HAS2 and HYAL1 are highly expressed in CAF, which might contribute to a higher production and degradation of HA in CAF matrix. Overall, our results suggested a distinct behavior of NHFB and CAF in 3D collagen matrices in the presence of TGF-β1 in terms of matrix remodeling and HA production pointing to a specific impact on tumor modulation. Full article
(This article belongs to the Special Issue Collagen-Based Hydrogels)
Show Figures

Graphical abstract

Back to TopTop