Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hyaladherin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 9911 KiB  
Review
Biomimetic Hyaluronan Binding Biomaterials to Capture the Complex Regulation of Hyaluronan in Tissue Development and Function
by Amelia Huffer, Mingyang Mao, Katherine Ballard and Tugba Ozdemir
Biomimetics 2024, 9(8), 499; https://doi.org/10.3390/biomimetics9080499 - 17 Aug 2024
Cited by 3 | Viewed by 2394
Abstract
Within native ECM, Hyaluronan (HA) undergoes remarkable structural remodeling through its binding receptors and proteins called hyaladherins. Hyaladherins contain a group of tandem repeat sequences, such as LINK domains, BxB7 homologous sequences, or 20–50 amino acid long short peptide sequences that [...] Read more.
Within native ECM, Hyaluronan (HA) undergoes remarkable structural remodeling through its binding receptors and proteins called hyaladherins. Hyaladherins contain a group of tandem repeat sequences, such as LINK domains, BxB7 homologous sequences, or 20–50 amino acid long short peptide sequences that have high affinity towards side chains of HA. The HA binding sequences are critical players in HA distribution and regulation within tissues and potentially attractive therapeutic targets to regulate HA synthesis and organization. While HA is a versatile and successful biopolymer, most HA-based therapeutics have major differences from a native HA molecule, such as molecular weight discrepancies, crosslinking state, and remodeling with other HA binding proteins. Recent studies showed the promise of HA binding domains being used as therapeutic biomaterials for osteoarthritic, ocular, or cardiovascular therapeutic products. However, we propose that there is a significant potential for HA binding materials to reveal the physiological functions of HA in a more realistic setting. This review is focused on giving a comprehensive overview of the connections between HA’s role in the body and the potential of HA binding material applications in therapeutics and regenerative medicine. We begin with an introduction to HA then discuss HA binding molecules and the process of HA binding. Finally, we discuss HA binding materials anf the future prospects of potential HA binding biomaterials systems in the field of biomaterials and tissue engineering. Full article
Show Figures

Figure 1

26 pages, 2074 KiB  
Review
Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix?
by Aikaterini Berdiaki, Monica Neagu, Ioanna Spyridaki, Andrey Kuskov, Serge Perez and Dragana Nikitovic
Antioxidants 2023, 12(4), 824; https://doi.org/10.3390/antiox12040824 - 28 Mar 2023
Cited by 59 | Viewed by 4912
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase [...] Read more.
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG) localized to the cell surface and the tissue extracellular matrix (ECM). It is composed of disaccharides containing glucuronic acid and N-acetylglucosamine, is synthesized by the HA synthase (HAS) enzymes and is degraded by hyaluronidase (HYAL) or reactive oxygen and nitrogen species (ROS/RNS) actions. HA is deposited as a high molecular weight (HMW) polymer and degraded to low molecular weight (LMW) fragments and oligosaccharides. HA affects biological functions by interacting with HA-binding proteins (hyaladherins). HMW HA is anti-inflammatory, immunosuppressive, and antiangiogenic, whereas LMW HA has pro-inflammatory, pro-angiogenetic, and oncogenic effects. ROS/RNS naturally degrade HMW HA, albeit at enhanced levels during tissue injury and inflammatory processes. Thus, the degradation of endothelial glycocalyx HA by increased ROS challenges vascular integrity and can initiate several disease progressions. Conversely, HA exerts a vital role in wound healing through ROS-mediated HA modifications, which affect the innate immune system. The normal turnover of HA protects against matrix rigidification. Insufficient turnover leads to increased tissue rigidity, leading to tissue dysfunction. Both endogenous and exogenous HMW HA have a scavenging capacity against ROS. The interactions of ROS/RNS with HA are more complex than presently perceived and present an important research topic. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

29 pages, 1243 KiB  
Review
Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review
by Monika Michalczyk, Ewelina Humeniuk, Grzegorz Adamczuk and Agnieszka Korga-Plewko
Int. J. Mol. Sci. 2023, 24(1), 103; https://doi.org/10.3390/ijms24010103 - 21 Dec 2022
Cited by 61 | Viewed by 6854
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with [...] Read more.
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action. Full article
(This article belongs to the Special Issue Tumor Microenvironment from a Precision Medicine Perspective 2.0)
Show Figures

Figure 1

16 pages, 1240 KiB  
Review
Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity
by Antony Hoarau, Myriam Polette and Christelle Coraux
Biomolecules 2022, 12(5), 658; https://doi.org/10.3390/biom12050658 - 30 Apr 2022
Cited by 27 | Viewed by 4897
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen [...] Read more.
Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen species (ROS) to give rise to low-molecular-weight HAs (LMW-HAs) that are potent pro-inflammatory molecules. Therefore, the size of HA regulates the balance of anti- or pro-inflammatory functions. The activities of HA depend also on its interactions with hyaladherins. HA synthesis, degradation, and activities through HA/receptors interactions define the hyaluronasome. In this review, a short overview of the role of high and low-molecular-weight HA polymers in the lungs is provided. The involvement of LMW-HA in pulmonary innate immunity via the activation of neutrophils, macrophages, dendritic cells, and epithelial cells is described to highlight LMW-HA as a therapeutic target in inflammatory respiratory diseases. Finally, the possibilities to counter LMW-HA’s deleterious effects in the lungs are discussed. Full article
(This article belongs to the Special Issue Hyaluronic Acid in Human Medicine)
Show Figures

Figure 1

Back to TopTop