Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = human influence index (HII)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6600 KiB  
Article
Developing a Wilderness Quality Index for Continental Europe
by Iurii Strus and Stephen Carver
Land 2024, 13(4), 428; https://doi.org/10.3390/land13040428 - 27 Mar 2024
Cited by 3 | Viewed by 2929
Abstract
This paper presents an updated wilderness quality map, WQI 2.0, for Europe, which extends the existing map (WQI 1.0) to include non-EU states in Eastern Europe. The analysis utilizes the Google Earth Engine (GEE) cloud platform and incorporates contemporary datasets to assess wilderness [...] Read more.
This paper presents an updated wilderness quality map, WQI 2.0, for Europe, which extends the existing map (WQI 1.0) to include non-EU states in Eastern Europe. The analysis utilizes the Google Earth Engine (GEE) cloud platform and incorporates contemporary datasets to assess wilderness quality across the continent. WQI 2.0 is compared to the previous version from the EU Wilderness register and global data from the WCS Human Influence Index (HII). Results indicate a high level of consistency between the versions, validating the robustness of the approach and the value of up-to-date datasets. WQI 2.0 serves as a valuable tool for developing a coordinated European policy on wilderness protection, encompassing both EU and non-EU states. By identifying areas outside current protected boundaries, the map helps to identify regions at risk of degradation and loss, due to resource exploitation. While small changes are seen between WQI 1.0 and WQI 2.0, expanding the coverage over the whole of continental Europe provides a foundation for the longer-term monitoring and evaluation of conservation targets. The findings contribute to meeting international commitments, such as the COP15 Kunming–Montreal Agreement and CBD targets, by highlighting the importance of preserving intact wilderness areas and increasing protected areas through restoration and rewilding efforts. Future iterations, such as WQI 3.0+, can track trends and potential threats to wilderness areas, while also identifying opportunities for ecosystem recovery through restoration and rewilding. To ensure comprehensive coverage, there is a need to update the existing Wilderness Register 1.0 and expand its scope to include non-EU states. This can be facilitated through collaboration with national WQI mapping programs, building on the experiences of countries such as Scotland, France, Iceland, and Germany, which have well-established national mapping initiatives. Overall, WQI 2.0 and the proposed updates provide valuable tools for informed decision-making in wilderness conservation and restoration efforts across Europe. Full article
Show Figures

Figure 1

21 pages, 4920 KiB  
Article
Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature’s Contribution to People in Kenya
by Risper Nyairo and Takashi Machimura
Climate 2020, 8(10), 109; https://doi.org/10.3390/cli8100109 - 3 Oct 2020
Cited by 9 | Viewed by 5512
Abstract
Climate and land-use changes are the main drivers of species distribution. On the basis of current and future climate and socioeconomic scenarios, species range projections were made for nine species in the Fabaceae family. Modeled species have instrumental and relational values termed as [...] Read more.
Climate and land-use changes are the main drivers of species distribution. On the basis of current and future climate and socioeconomic scenarios, species range projections were made for nine species in the Fabaceae family. Modeled species have instrumental and relational values termed as nature’s contribution to people (NCP). For each species, five scenarios were analyzed resulting in 45 species range maps. Representative concentration pathway (RCP) 4.5 and three shared socioeconomic pathways (SSPs 1, 2, and 3) were used in the analysis. Species ranges under these scenarios were modeled using MaxEnt; a niche modeling software that relates species occurrence with environmental variables. Results were used to compute species richness and evenness based on Shannon’s diversity Index. Results revealed a mix of range expansion and contraction for the modeled species. The findings highlighted which species may remain competitive in an urbanized future and which ones are detrimentally affected by climate. Parts of the country where species abundances are likely to change due to climate and socioeconomic changes were identified. Management of species will be required in people-dominated landscapes to maintain interactions between nature and society, while avoiding natural resource degradation and loss of NCP. Full article
(This article belongs to the Special Issue The Interaction of Climate Change with Landscape and Environment)
Show Figures

Figure 1

18 pages, 7951 KiB  
Article
Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors
by Ya Liu, Yan Li, Shuangcheng Li and Safa Motesharrei
Remote Sens. 2015, 7(10), 13233-13250; https://doi.org/10.3390/rs71013233 - 6 Oct 2015
Cited by 245 | Viewed by 19278
Abstract
Changes in vegetation activity are driven by multiple natural and anthropogenic factors, which can be reflected by Normalized Difference Vegetation Index (NDVI) derived from satellites. In this paper, NDVI trends from 1982 to 2012 are first estimated by the Theil–Sen median slope method [...] Read more.
Changes in vegetation activity are driven by multiple natural and anthropogenic factors, which can be reflected by Normalized Difference Vegetation Index (NDVI) derived from satellites. In this paper, NDVI trends from 1982 to 2012 are first estimated by the Theil–Sen median slope method to explore their spatial and temporal patterns. Then, the impact of climate variables and human activity on the observed NDVI trends is analyzed. Our results show that on average, NDVI increased by 0.46 × 10−3 per year from 1982 to 2012 globally with decadal variations. For most regions of the world, a greening (increasing)–browning (decreasing)–greening (G-B-G) trend is observed over the periods 1982–2004, 1995–2004, and 2005–2012, respectively. A positive partial correlation of NDVI and temperature is observed in the first period but it decreases and occasionally becomes negative in the following periods, especially in the Humid Temperate and Dry Domain Regions. This suggests a weakened effect of temperature on vegetation growth. Precipitation, on the other hand, is found to have a positive impact on the NDVI trend. This effect becomes stronger in the third period of 1995–2004, especially in the Dry Domain Region. Anthropogenic effects and human activities, derived here from the Human Footprint Dataset and the associated Human Influence Index (HII), have varied impacts on the magnitude (absolute value) of the NDVI trends across continents. Significant positive effects are found in Asia, Africa, and Europe, suggesting that intensive human activity could accelerate the change in NDVI and vegetation. A more accurate attribution of vegetation change to specific climatic and anthropogenic factors is instrumental to understand vegetation dynamics and requires further research. Full article
(This article belongs to the Special Issue Earth Observations for the Sustainable Development)
Show Figures

Graphical abstract

Back to TopTop