Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = human deoxycytidine kinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4390 KiB  
Article
Targeting AHR Increases Pancreatic Cancer Cell Sensitivity to Gemcitabine through the ELAVL1-DCK Pathway
by Darius Stukas, Aldona Jasukaitiene, Arenida Bartkeviciene, Jason Matthews, Toivo Maimets, Indrek Teino, Kristaps Jaudzems, Antanas Gulbinas and Zilvinas Dambrauskas
Int. J. Mol. Sci. 2023, 24(17), 13155; https://doi.org/10.3390/ijms241713155 - 24 Aug 2023
Cited by 5 | Viewed by 2597
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances [...] Read more.
The aryl hydrocarbon receptor (AHR) is a transcription factor that is commonly upregulated in pancreatic ductal adenocarcinoma (PDAC). AHR hinders the shuttling of human antigen R (ELAVL1) from the nucleus to the cytoplasm, where it stabilises its target messenger RNAs (mRNAs) and enhances protein expression. Among these target mRNAs are those induced by gemcitabine. Increased AHR expression leads to the sequestration of ELAVL1 in the nucleus, resulting in chemoresistance. This study aimed to investigate the interaction between AHR and ELAVL1 in the pathogenesis of PDAC in vitro. AHR and ELAVL1 genes were silenced by siRNA transfection. The RNA and protein were extracted for quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analysis. Direct binding between the ELAVL1 protein and AHR mRNA was examined through immunoprecipitation (IP) assay. Cell viability, clonogenicity, and migration assays were performed. Our study revealed that both AHR and ELAVL1 inter-regulate each other, while also having a role in cell proliferation, migration, and chemoresistance in PDAC cell lines. Notably, both proteins function through distinct mechanisms. The silencing of ELAVL1 disrupts the stability of its target mRNAs, resulting in the decreased expression of numerous cytoprotective proteins. In contrast, the silencing of AHR diminishes cell migration and proliferation and enhances cell sensitivity to gemcitabine through the AHR-ELAVL1-deoxycytidine kinase (DCK) molecular pathway. In conclusion, AHR and ELAVL1 interaction can form a negative feedback loop. By inhibiting AHR expression, PDAC cells become more susceptible to gemcitabine through the ELAVL1-DCK pathway. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer)
Show Figures

Figure 1

12 pages, 1393 KiB  
Article
Does Intracellular Metabolism Render Gemcitabine Uptake Undetectable in Mass Spectrometry?
by Julian Peter Müller and Dirk Gründemann
Int. J. Mol. Sci. 2022, 23(9), 4690; https://doi.org/10.3390/ijms23094690 - 23 Apr 2022
Cited by 4 | Viewed by 2184
Abstract
The ergothioneine transporter ETT (formerly OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). Recently, Sparreboom et al. reported that the ETT would transport nucleosides and nucleoside analogues such as cytarabine and gemcitabine [...] Read more.
The ergothioneine transporter ETT (formerly OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). Recently, Sparreboom et al. reported that the ETT would transport nucleosides and nucleoside analogues such as cytarabine and gemcitabine with the highest efficiency. In our assay system, we could not detect any such transport. Subsequently, Sparreboom suggested that the intracellular metabolization of the nucleosides occurs so fast that the original compounds cannot be detected by LC–MS/MS after inward transport. Our current experiments with 293 cells disprove this hypothesis. Uptake of gemcitabine was easily detected by LC–MS/MS measurements when we expressed the Na+/nucleoside cotransporter CNT3 (SLC28A3). Inward transport was 1280 times faster than the intracellular production of gemcitabine triphosphate. The deoxycytidine kinase inhibitor 2-thio-2′-deoxycytidine markedly blocked the production of gemcitabine triphosphate. There was no concomitant surge in intracellular gemcitabine, however. This does not fit the rapid phosphorylation of gemcitabine. Uptake of cytarabine was very slow, but detection by MS was still possible. When the ETT was expressed and incubated with gemcitabine, there was no increase in intracellular gemcitabine triphosphate. We conclude that the ETT does not transport nucleosides. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 1687 KiB  
Article
RRM1 Expression as a Prognostic Biomarker for Unresectable or Recurrent Biliary Tract Cancer Treated with Gemcitabine plus Cisplatin
by Jung Won Chun, Boyoung Lee, Weon Seo Park, Nayoung Han, Eun Kyung Hong, Eun Young Park, Sung Sik Han, Sang-Jae Park, Tae Hyun Kim, Woo Jin Lee and Sang Myung Woo
J. Clin. Med. 2021, 10(20), 4652; https://doi.org/10.3390/jcm10204652 - 11 Oct 2021
Cited by 3 | Viewed by 1952
Abstract
The combination of gemcitabine plus cisplatin (GP) is regarded as a first-line treatment for patients with unresectable or recurrent biliary tract cancer (BTC). Several proteins including human equilibrative nucleoside transporter-1 (hENT1), deoxycytidine kinase (DCK), cytidine deaminase (CDA), and ribonucleotide reductase subunit 1 (RRM1) [...] Read more.
The combination of gemcitabine plus cisplatin (GP) is regarded as a first-line treatment for patients with unresectable or recurrent biliary tract cancer (BTC). Several proteins including human equilibrative nucleoside transporter-1 (hENT1), deoxycytidine kinase (DCK), cytidine deaminase (CDA), and ribonucleotide reductase subunit 1 (RRM1) are known to be involved in gemcitabine uptake and metabolism. This study was aimed to identify the predictive and prognostic values of these biomarkers in patients who treated with GP for advanced BTC. Tumor samples were obtained from 34 patients with unresectable or recurrent BTC who were treated with GP between August 2015 and February 2018. Intratumoral expression of hENT1, DCK, CDA and RRM1 was determined by immunohistochemistry and analyzed for association with chemotherapy response, progression-free survival (PFS) and overall survival (OS). Median OS was significantly longer in the RRM1-negative group than in the RRM1-positive (9.9 months vs. 5.9 months, p = 0.037). Multivariate adjustment analyses also demonstrated RRM1 expression as an independent prognostic factor for OS in patients treated with GP chemotherapy. Increased intratumoral expression of RRM1 on immunohistochemical staining may be a biomarker predicting poor survival in patients with GP chemotherapy for advanced BTC. Large-scale well-predefined prospective research is needed to validate the utility of biomarkers in clinical practice. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

14 pages, 2708 KiB  
Article
Human Deoxycytidine Kinase Is a Valuable Biocatalyst for the Synthesis of Nucleotide Analogues
by Katja F. Hellendahl, Sarah Kamel, Albane Wetterwald, Peter Neubauer and Anke Wagner
Catalysts 2019, 9(12), 997; https://doi.org/10.3390/catal9120997 - 27 Nov 2019
Cited by 9 | Viewed by 3849
Abstract
Natural ribonucleoside-5’-monophosphates are building blocks for nucleic acids which are used for a number of purposes, including food additives. Their analogues, additionally, are used in pharmaceutical applications. Fludarabine-5´-monophosphate, for example, is effective in treating hematological malignancies. To date, ribonucleoside-5’-monophosphates are mainly produced by [...] Read more.
Natural ribonucleoside-5’-monophosphates are building blocks for nucleic acids which are used for a number of purposes, including food additives. Their analogues, additionally, are used in pharmaceutical applications. Fludarabine-5´-monophosphate, for example, is effective in treating hematological malignancies. To date, ribonucleoside-5’-monophosphates are mainly produced by chemical synthesis, but the inherent drawbacks of this approach have led to the development of enzymatic synthesis routes. In this study, we evaluated the potential of human deoxycytidine kinase (HsdCK) as suitable biocatalyst for the synthesis of natural and modified ribonucleoside-5’-monophosphates from their corresponding nucleosides. Human dCK was heterologously expressed in E. coli and immobilized onto Nickel-nitrilotriacetic acid (Ni-NTA) superflow. A screening of the substrate spectrum of soluble and immobilized biocatalyst revealed that HsdCK accepts a wide range of natural and modified nucleosides, except for thymidine and uridine derivatives. Upon optimization of the reaction conditions, HsdCK was used for the synthesis of fludarabine-5´-monophosphate using increasing substrate concentrations. While the soluble biocatalyst revealed highest product formation with the lowest substrate concentration of 0.3 mM, the product yield increased with increasing substrate concentrations in the presence of the immobilized HsdCK. Hence, the application of immobilized HsdCK is advantageous upon using high substrate concentration which is relevant in industrial applications. Full article
(This article belongs to the Special Issue Immobilization of Enzymes)
Show Figures

Figure 1

47 pages, 5805 KiB  
Article
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity
by Sean M. Santos, Mert Icyuz, Ilya Pound, Doreen William, Jingyu Guo, Brett A. McKinney, Michael Niederweis, John Rodgers and John L. Hartman
Genes 2019, 10(10), 770; https://doi.org/10.3390/genes10100770 - 30 Sep 2019
Cited by 4 | Viewed by 5475
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities [...] Read more.
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents. Full article
(This article belongs to the Special Issue Humanized Yeast Models)
Show Figures

Figure 1

19 pages, 1897 KiB  
Article
Inverse Molecular Docking as a Novel Approach to Study Anticarcinogenic and Anti-Neuroinflammatory Effects of Curcumin
by Veronika Furlan, Janez Konc and Urban Bren
Molecules 2018, 23(12), 3351; https://doi.org/10.3390/molecules23123351 - 18 Dec 2018
Cited by 71 | Viewed by 10551
Abstract
Research efforts are placing an ever increasing emphasis on identifying signal transduction pathways related to the chemopreventive activity of curcumin. Its anticarcinogenic effects are presumably mediated by the regulation of signaling cascades, including nuclear factor κB (NF-κB), activator protein 1 (AP-1), and mitogen-activated [...] Read more.
Research efforts are placing an ever increasing emphasis on identifying signal transduction pathways related to the chemopreventive activity of curcumin. Its anticarcinogenic effects are presumably mediated by the regulation of signaling cascades, including nuclear factor κB (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPK). By modulating signal transduction pathways, curcumin induces apoptosis in malignant cells, thus inhibiting cancer development and progression. Due to the lack of mechanistic insight in the scientific literature, we developed a novel inverse molecular docking protocol based on the CANDOCK algorithm. For the first time, we performed inverse molecular docking of curcumin into a collection of 13,553 available human protein structures from the Protein Data Bank resulting in prioritized target proteins of curcumin. Our predictions were in agreement with the scientific literature and confirmed that curcumin binds to folate receptor β, DNA (cytosine-5)-methyltransferase 3A, metalloproteinase-2, mitogen-activated protein kinase 9, epidermal growth factor receptor and apoptosis-inducing factor 1. We also identified new potential protein targets of curcumin, namely deoxycytidine kinase, NAD-dependent protein deacetylase sirtuin-1 and -2, ecto-5′-nucleotidase, core histone macro-H2A.1, tyrosine-protein phosphatase non-receptor type 11, macrophage colony-stimulating factor 1 receptor, GTPase HRas, aflatoxin B1 aldehyde reductase member 3, aldo-keto reductase family 1 member C3, amiloride-sensitive amine oxidase, death-associated protein kinase 2 and tryptophan-tRNA ligase, that may all play a crucial role in its observed anticancer effects. Moreover, our inverse docking results showed that curcumin potentially binds also to the proteins cAMP-specific 3′,5′-cyclic phosphodiesterase 4D and 17-β-hydroxysteroid dehydrogenase type 10, which provides a new explanation for its efficiency in the treatment of Alzheimer’s disease. We firmly believe that our computational results will complement and direct future experimental studies on curcumin’s anticancer activity as well as on its therapeutic effects against Alzheimer’s disease. Full article
(This article belongs to the Special Issue Receptor-Dependent QSAR Methods)
Show Figures

Graphical abstract

13 pages, 204 KiB  
Article
dNTP Supply Gene Expression Patterns after P53 Loss
by Tomas Radivoyevitch, Yogen Saunthararajah, John Pink, Gina Ferris, Ian Lent, Mark Jackson, Damian Junk and Charles A. Kunos
Cancers 2012, 4(4), 1212-1224; https://doi.org/10.3390/cancers4041212 - 20 Nov 2012
Cited by 7 | Viewed by 7127
Abstract
Loss of the transcription factor p53 implies mRNA losses of target genes such as the p53R2 subunit of human ribonucleotide reductase (RNR). We hypothesized that other genes in the dNTP supply system would compensate for such p53R2 losses and looked for this in [...] Read more.
Loss of the transcription factor p53 implies mRNA losses of target genes such as the p53R2 subunit of human ribonucleotide reductase (RNR). We hypothesized that other genes in the dNTP supply system would compensate for such p53R2 losses and looked for this in our own data and in data of the Gene Expression Omnibus (GEO). We found that the de novo dNTP supply system compensates for p53R2 losses with increases in RNR subunit R1, R2, or both. We also found compensatory increases in cytosolic deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1) and in mitochondrial deoxyguanosine kinase (dGK), all of the salvage dNTP supply system; in contrast, the remaining mitochondrial salvage enzyme thymidine kinase 2 (TK2) decreased with p53 loss. Thus, TK2 may be more dedicated to meeting mitochondrial dNTP demands than dGK which may be more obligated to assist cytosolic dNTP supply in meeting nuclear DNA dNTP demands. Full article
Show Figures

Figure 1

Back to TopTop