Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = human cerebral vascular smooth muscle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4274 KiB  
Article
Proportions of Basement Membrane Proteins in Cerebrovascular Smooth Muscle Cells After Exposure to Hypercapnia and Amyloid Beta
by Jennifer M. Dewing, Abby Keable, Alexandru Laslo, Laura Chinezu, Adrian Ivanescu, J. Arjuna Ratnayaka, Raj Kalaria, Mark Slevin, Ajay Verma and Roxana O. Carare
Cells 2025, 14(8), 614; https://doi.org/10.3390/cells14080614 - 18 Apr 2025
Viewed by 822
Abstract
Vascular basement membranes (BMs), composed of laminins, collagen IV, fibronectin, and perlecan, are secreted by endothelial cells, pericytes, smooth muscle cells (SMCs), and astrocytes. In the brain, amyloid beta (Aβ) is eliminated along cerebrovascular BMs of capillaries and arteries as intramural periarterial drainage [...] Read more.
Vascular basement membranes (BMs), composed of laminins, collagen IV, fibronectin, and perlecan, are secreted by endothelial cells, pericytes, smooth muscle cells (SMCs), and astrocytes. In the brain, amyloid beta (Aβ) is eliminated along cerebrovascular BMs of capillaries and arteries as intramural periarterial drainage (IPAD). Ageing modifies vascular BMs, impairing IPAD and leading to Aβ deposition as cerebral amyloid angiopathy. To better understand the molecular determinants of IPAD in ageing, we quantified the relative abundance of BMs secreted by human-derived cerebral endothelial cells, pericytes, brain vascular SMCs, and astrocytes in vitro. We then assessed BM protein levels in SMCs under hypercapnia (8% CO2) as a model of vascular ageing, with and without Aβ exposure. Of the four cell types, we found SMCs secreted the highest levels of fibronectin, laminin, and perlecan, whilst pericytes secreted the highest levels of collagen IV. Hypercapnia increased the expression of collagen IV and fibronectin in SMCs but decreased the expression of laminin. The expression of perlecan increased under hypercapnia, but only in the presence of Aβ. This work highlights the varying compositions of vascular BMs and the dynamic differential responses of SMCs to Aβ and hypercapnia, helping to elucidate the age-related changes that impair IPAD in cerebral vessels. Full article
Show Figures

Figure 1

16 pages, 2970 KiB  
Article
Plasma Endothelin-1 Levels: Non-Predictors of Alzheimer’s Disease Reveal Age Correlation in African American Women
by Irene A. Zagol-Ikapitte, Mohammad A. Tabatabai, Derek M. Wilus and Donald J. Alcendor
J. Clin. Med. 2025, 14(2), 635; https://doi.org/10.3390/jcm14020635 - 19 Jan 2025
Viewed by 1206
Abstract
Background/Objectives: Alzheimer’s disease (AD) and related dementias (ADRD) disproportionately impact racial and ethnic minorities. Contributing biological factors that explain this disparity have been elusive. Moreover, non-invasive biomarkers for early detection of AD are needed. Endothelin-1 (ET-1), a vasoconstrictive factor linked to cerebral vascular [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) and related dementias (ADRD) disproportionately impact racial and ethnic minorities. Contributing biological factors that explain this disparity have been elusive. Moreover, non-invasive biomarkers for early detection of AD are needed. Endothelin-1 (ET-1), a vasoconstrictive factor linked to cerebral vascular disease pathology and neuronal injury, could provide insights to better understand racial disparities in AD. As a potent vasoconstrictive peptide that regulates contractions in smooth muscle, endothelial cells, and pericytes, ET-1 may result in cerebral vascular constriction, leading to cerebral hypoperfusion; over time, this may result in neuronal injury, contributing to the pathology of AD. The role of the ET-1 system as a driver of ethnic disparities in AD requires further investigation. In the United States (U.S.), ET-1 dysregulation in Hispanic/Latinx (H/L) ethnic populations has largely been unexplored. Genetics linking ET-1 dysregulation and racial disparities in AD also require further investigation. In this study, we examined the role of the ET-1 protein in human plasma as a potential biomarker with predictive value for correlating with the development of AD by age, race, and sex. Methods: We examined ET-1 protein levels using quantitative mass spectrometry in AA and NHW patients with AD, along with controls. Results: A partial correlation between age at draw and ET-1, stratified by race and sex, while controlling for AD status, was significant for female AAs (r = 0.385, p = 0.016). When the data were not stratified but controlled for AD status, the partial correlation between age at draw and ET-1 was not significant (r = 0.108, p = 0.259). Conclusions: Based on the small number of plasma specimens and no plasma specimens from H/L individuals with AD, we conclude that ET-1 was clearly not a significant factor in predicting AD in this study and will require a larger scale study for validation. Full article
(This article belongs to the Section Brain Injury)
Show Figures

Figure 1

14 pages, 3714 KiB  
Brief Report
CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex
by Carson D. Whinnery, Ying Nie, Danilo S. Boskovic, Salvador Soriano and Wolff M. Kirsch
Brain Sci. 2024, 14(6), 601; https://doi.org/10.3390/brainsci14060601 - 14 Jun 2024
Cited by 2 | Viewed by 1510
Abstract
Cerebral amyloid angiopathy is characterized by a weakening of the small- and medium-sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid β, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement [...] Read more.
Cerebral amyloid angiopathy is characterized by a weakening of the small- and medium-sized cerebral arteries, as their smooth muscle cells are progressively replaced with acellular amyloid β, increasing vessel fragility and vulnerability to microhemorrhage. In this context, an aberrant overactivation of the complement system would further aggravate this process. The surface protein CD59 protects most cells from complement-induced cytotoxicity, but expression levels can fluctuate due to disease and varying cell types. The degree to which CD59 protects human cerebral vascular smooth muscle (HCSM) cells from complement-induced cytotoxicity has not yet been determined. To address this shortcoming, we selectively blocked the activity of HCSM-expressed CD59 with an antibody, and challenged the cells with complement, then measured cellular viability. Unblocked HCSM cells proved resistant to all tested concentrations of complement, and this resistance decreased progressively with increasing concentrations of anti-CD59 antibody. Complete CD59 blockage, however, did not result in a total loss of cellular viability, suggesting that additional factors may have some protective functions. Taken together, this implies that CD59 plays a predominant role in HCSM cellular protection against complement-induced cytotoxicity. The overexpression of CD59 could be an effective means of protecting these cells from excessive complement system activity, with consequent reductions in the incidence of microhemorrhage. The precise extent to which cellular repair mechanisms and other complement repair proteins contribute to this resistance has yet to be fully elucidated. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

24 pages, 4074 KiB  
Technical Note
Modal Analysis of Cerebrovascular Effects for Digital Health Integration of Neurostimulation Therapies—A Review of Technology Concepts
by Marcel Stefanski, Yashika Arora, Mancheung Cheung and Anirban Dutta
Brain Sci. 2024, 14(6), 591; https://doi.org/10.3390/brainsci14060591 - 10 Jun 2024
Cited by 1 | Viewed by 2287
Abstract
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular [...] Read more.
Transcranial electrical stimulation (tES) is increasingly recognized for its potential to modulate cerebral blood flow (CBF) and evoke cerebrovascular reactivity (CVR), which are crucial in conditions like mild cognitive impairment (MCI) and dementia. This study explores the impact of tES on the neurovascular unit (NVU), employing a physiological modeling approach to simulate the vascular response to electric fields generated by tES. Utilizing the FitzHugh–Nagumo model for neuroelectrical activity, we demonstrate how tES can initiate vascular responses such as vasoconstriction followed by delayed vasodilation in cerebral arterioles, potentially modulated by a combination of local metabolic demands and autonomic regulation (pivotal locus coeruleus). Here, four distinct pathways within the NVU were modeled to reflect the complex interplay between synaptic activity, astrocytic influences, perivascular potassium dynamics, and smooth muscle cell responses. Modal analysis revealed characteristic dynamics of these pathways, suggesting that oscillatory tES may finely tune the vascular tone by modulating the stiffness and elasticity of blood vessel walls, possibly by also impacting endothelial glycocalyx function. The findings underscore the therapeutic potential vis-à-vis blood-brain barrier safety of tES in modulating neurovascular coupling and cognitive function needing the precise modulation of NVU dynamics. This technology review supports the human-in-the-loop integration of tES leveraging digital health technologies for the personalized management of cerebral blood flow, offering new avenues for treating vascular cognitive disorders. Future studies should aim to optimize tES parameters using computational modeling and validate these models in clinical settings, enhancing the understanding of tES in neurovascular health. Full article
Show Figures

Figure 1

40 pages, 12420 KiB  
Review
The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma
by Gregory A. Elder, Miguel A. Gama Sosa, Rita De Gasperi, Georgina Perez Garcia, Gissel M. Perez, Rania Abutarboush, Usmah Kawoos, Carolyn W. Zhu, William G. M. Janssen, James R. Stone, Patrick R. Hof, David G. Cook and Stephen T. Ahlers
Int. J. Mol. Sci. 2024, 25(2), 1150; https://doi.org/10.3390/ijms25021150 - 17 Jan 2024
Cited by 6 | Viewed by 4016
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, [...] Read more.
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood–brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury. Full article
Show Figures

Figure 1

17 pages, 3241 KiB  
Review
Milk Fat Globule Epidermal Growth Factor VIII Fragment Medin in Age-Associated Arterial Adverse Remodeling and Arterial Disease
by Mingyi Wang, Kimberly R. McGraw and Robert E. Monticone
Cells 2023, 12(2), 253; https://doi.org/10.3390/cells12020253 - 7 Jan 2023
Cited by 9 | Viewed by 4355
Abstract
Medin, a small 50-amino acid peptide, is an internal cleaved product from the second discoidin domain of milk fat globule epidermal growth factor VIII (MFG-E8) protein. Medin has been reported as the most common amylogenic protein in the upper part of the arterial [...] Read more.
Medin, a small 50-amino acid peptide, is an internal cleaved product from the second discoidin domain of milk fat globule epidermal growth factor VIII (MFG-E8) protein. Medin has been reported as the most common amylogenic protein in the upper part of the arterial system, including aortic, temporal, and cerebral arterial walls in the elderly. Medin has a high affinity to elastic fibers and is closely associated with arterial degenerative inflammation, elastic fiber fragmentation, calcification, and amyloidosis. In vitro, treating with the medin peptide promotes the inflammatory phenotypic shift of both endothelial cells and vascular smooth muscle cells. In vitro, ex vivo, and in vivo studies demonstrate that medin enhances the abundance of reactive oxygen species and reactive nitrogen species produced by both endothelial cells and vascular smooth muscle cells and promotes vascular endothelial dysfunction and arterial stiffening. Immunostaining and immunoblotting analyses of human samples indicate that the levels of medin are increased in the pathogenesis of aortic aneurysm/dissection, temporal arteritis, and cerebrovascular dementia. Thus, medin peptide could be targeted as a biomarker diagnostic tool or as a potential molecular approach to curbing the arterial degenerative inflammatory remodeling that accompanies aging and disease. Full article
Show Figures

Figure 1

16 pages, 974 KiB  
Review
New Insights into Cerebral Vessel Disease Landscapes at Single-Cell Resolution: Pathogenetic and Therapeutic Perspectives
by Megi Meneri, Sara Bonato, Delia Gagliardi, Giacomo P. Comi and Stefania Corti
Biomedicines 2022, 10(7), 1693; https://doi.org/10.3390/biomedicines10071693 - 13 Jul 2022
Cited by 6 | Viewed by 3666
Abstract
Cerebrovascular diseases are a leading cause of death and disability globally. The development of new therapeutic targets for cerebrovascular diseases (e.g., ischemic, and hemorrhagic stroke, vascular dementia) is limited by a lack of knowledge of the cellular and molecular biology of health and [...] Read more.
Cerebrovascular diseases are a leading cause of death and disability globally. The development of new therapeutic targets for cerebrovascular diseases (e.g., ischemic, and hemorrhagic stroke, vascular dementia) is limited by a lack of knowledge of the cellular and molecular biology of health and disease conditions and the factors that cause injury to cerebrovascular structures. Here, we describe the role of advances in omics technology, particularly RNA sequencing, in studying high-dimensional, multifaceted profiles of thousands of individual blood and vessel cells at single-cell resolution. This analysis enables the dissection of the heterogeneity of diseased cerebral vessels and their atherosclerotic plaques, including the microenvironment, cell evolutionary trajectory, and immune response pathway. In animal models, RNA sequencing permits the tracking of individual cells (including immunological, endothelial, and vascular smooth muscle cells) that compose atherosclerotic plaques and their alteration under experimental settings such as phenotypic transition. We describe how single-cell RNA transcriptomics in humans allows mapping to the molecular and cellular levels of atherosclerotic plaques in cerebral arteries, tracking individual lymphocytes and macrophages, and how these data can aid in identifying novel immune mechanisms that could be exploited as therapeutic targets for cerebrovascular diseases. Single-cell multi-omics approaches will likely provide the unprecedented resolution and depth of data needed to generate clinically relevant cellular and molecular signatures for the precise treatment of cerebrovascular diseases. Full article
(This article belongs to the Special Issue Molecular Research in Neurological and Psychiatric Disease)
Show Figures

Figure 1

12 pages, 2025 KiB  
Article
Amyloid Beta Peptides and Th1 Cytokines Modulate Human Brain Vascular Smooth Muscle Tonic Contractile Capacity In Vitro: Relevance to Alzheimer’s Disease?
by J. Winny Yun, Caretia Washington, Joi McCormick, Emily Stevenson and J. Steven Alexander
Pathophysiology 2021, 28(1), 64-75; https://doi.org/10.3390/pathophysiology28010006 - 11 Feb 2021
Cited by 6 | Viewed by 2776
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative condition characterized both by the presence of tau protein neurofibrillary tangles and amyloid beta (Aβ) containing extracellular “plaques”. The cleavage of amyloid precursor protein (APP) yields several Aβ peptides. Although Aβ toxicity to neurons has been described [...] Read more.
Alzheimer’s Disease (AD) is a neurodegenerative condition characterized both by the presence of tau protein neurofibrillary tangles and amyloid beta (Aβ) containing extracellular “plaques”. The cleavage of amyloid precursor protein (APP) yields several Aβ peptides. Although Aβ toxicity to neurons has been described extensively, its effects on other components of the neurovasculature such as vascular smooth muscle cells have been less well characterized. AD is now also recognized as a neurovascular disease characterized by cerebral microbleeds and disturbances in autoregulation. AD is also a neuroinflammatory condition in which several proinflammatory cytokines are elevated and may contribute to the intensification of AD severity. Cerebral autoregulation (the mechanism by which brain blood flow is maintained despite changes in perfusion pressure) is extremely tightly controlled in the brain and shows disturbances in AD. The failure of autoregulation in AD may make the brain susceptible to cerebral microbleeds through a reduced capacity to limit blood flow when pressure is increased. Conversely, reduced vasodilation during low flow might could also exacerbate tissue hypoxia. Currently, whether and how Aβ peptides and inflammatory cytokines depress brain smooth muscle cell tonic contraction is not known, but could reveal important targets in the preservation of autoregulation which is disturbed in AD. We used a collagen gel contractility assay to evaluate the influence of Aβ25-35, Aβ1-40 and Aβ1-42 peptides and inflammatory cytokines on the tonic contractility of human brain vascular smooth muscle cells (HBVSMC) as an in vitro model of cerebral autoregulation. We found that 5 and 10 μM Aβ1-42 significantly depressed HBVSM contractility, while Aβ1-40 5–20 μM had no effect on contractility. Conversely, Aβ25-35 (1–50 μM) increased contractility. Interestingly, the inflammatory cytokines TNF-α (20 ng/mL), IL-1β (20 ng/mL) and IFN-γ (1000 U/mL) also depressed HBVSM tonic contractility alone and in combination. These data suggest that both the inflammatory milieu in AD as well as the abundance of Aβ peptides may promote autoregulatory failure and increase brain susceptibility to dysregulated perfusion and microbleeds which are an important and devastating characteristic of AD. Full article
Show Figures

Figure 1

22 pages, 707 KiB  
Review
The Role of Inflammation and Myeloperoxidase-Related Oxidative Stress in the Pathogenesis of Genetically Triggered Thoracic Aortic Aneurysms
by Cassandra Malecki, Brett D. Hambly, Richmond W. Jeremy and Elizabeth N. Robertson
Int. J. Mol. Sci. 2020, 21(20), 7678; https://doi.org/10.3390/ijms21207678 - 16 Oct 2020
Cited by 38 | Viewed by 5026
Abstract
Genetically triggered thoracic aortic aneurysms (TAAs) are usually considered to exhibit minimal levels of inflammation. However, emerging data demonstrate that specific features of an inflammatory response can be observed in TAA, and that the extent of the inflammatory response can be correlated with [...] Read more.
Genetically triggered thoracic aortic aneurysms (TAAs) are usually considered to exhibit minimal levels of inflammation. However, emerging data demonstrate that specific features of an inflammatory response can be observed in TAA, and that the extent of the inflammatory response can be correlated with the severity, in both mouse models and in human studies. Myeloperoxidase (MPO) is a key mediator of the inflammatory response, via production of specific oxidative species, e.g., the hypohalous acids. Specific tissue modifications, mediated by hypohalous acids, have been documented in multiple cardiovascular pathologies, including atherosclerosis associated with coronary artery disease, abdominal aortic, and cerebral aneurysms. Similarly, data are now emerging that show the capacity of MPO-derived oxidative species to regulate mechanisms important in TAA pathogenesis, including alterations in extracellular matrix homeostasis, activation of matrix metalloproteinases, induction of endothelial dysfunction and vascular smooth muscle cell phenotypic switching, and activation of ERK1/2 signaling. The weight of evidence supports a role for inflammation in exacerbating the severity of TAA progression, expanding our understanding of the pathogenesis of TAA, identifying potential biomarkers for early detection of TAA, monitoring severity and progression, and for defining potential novel therapeutic targets. Full article
(This article belongs to the Special Issue Role for the Enzyme Myeloperoxidase to Elicit Pathologies)
Show Figures

Figure 1

14 pages, 5383 KiB  
Article
Vascular α1A Adrenergic Receptors as a Potential Therapeutic Target for IPAD in Alzheimer’s Disease
by Miles Frost, Abby Keable, Dan Baseley, Amber Sealy, Diana Andreea Zbarcea, Maureen Gatherer, Ho Ming Yuen, Matt MacGregor Sharp, Roy O. Weller, Johannes Attems, Colin Smith, Paul R. Chiarot and Roxana O. Carare
Pharmaceuticals 2020, 13(9), 261; https://doi.org/10.3390/ph13090261 - 22 Sep 2020
Cited by 11 | Viewed by 3892
Abstract
Drainage of interstitial fluid from the brain occurs via the intramural periarterial drainage (IPAD) pathways along the basement membranes of cerebral capillaries and arteries against the direction of blood flow into the brain. The cerebrovascular smooth muscle cells (SMCs) provide the motive force [...] Read more.
Drainage of interstitial fluid from the brain occurs via the intramural periarterial drainage (IPAD) pathways along the basement membranes of cerebral capillaries and arteries against the direction of blood flow into the brain. The cerebrovascular smooth muscle cells (SMCs) provide the motive force for driving IPAD, and their decrease in function may explain the deposition of amyloid-beta as cerebral amyloid angiopathy (CAA), a key feature of Alzheimer’s disease. The α-adrenoceptor subtype α1A is abundant in the brain, but its distribution in the cerebral vessels is unclear. We analysed cultured human cerebrovascular SMCs and young, old and CAA human brains for (a) the presence of α1A receptor and (b) the distribution of the α1A receptor within the cerebral vessels. The α1A receptor was present on the wall of cerebrovascular SMCs. No significant changes were observed in the vascular expression of the α1A-adrenergic receptor in young, old and CAA cases. The pattern of vascular staining appeared less punctate and more diffuse with ageing and CAA. Our results show that the α1A-adrenergic receptor is preserved in cerebral vessels with ageing and in CAA and is expressed on cerebrovascular smooth muscle cells, suggesting that vascular adrenergic receptors may hold potential for therapeutic targeting of IPAD. Full article
(This article belongs to the Special Issue New Drugs and Biologics For Treatment of Central Nervous Dysfunction)
Show Figures

Figure 1

22 pages, 2683 KiB  
Article
Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles
by Sarah Logan, Thiago Arzua, Yasheng Yan, Congshan Jiang, Xiaojie Liu, Lai-Kang Yu, Qing-Song Liu and Xiaowen Bai
Cells 2020, 9(5), 1301; https://doi.org/10.3390/cells9051301 - 23 May 2020
Cited by 36 | Viewed by 7769
Abstract
Background: The development of 3D cerebral organoid technology using human-induced pluripotent stem cells (iPSCs) provides a promising platform to study how brain diseases are appropriately modeled and treated. So far, understanding of the characteristics of organoids is still in its infancy. The current [...] Read more.
Background: The development of 3D cerebral organoid technology using human-induced pluripotent stem cells (iPSCs) provides a promising platform to study how brain diseases are appropriately modeled and treated. So far, understanding of the characteristics of organoids is still in its infancy. The current study profiled, for the first time, the electrophysiological properties of organoids at molecular and cellular levels and dissected the potential age equivalency of 2-month-old organoids to human ones by a comparison of gene expression profiles among cerebral organoids, human fetal and adult brains. Results: Cerebral organoids exhibit heterogeneous gene and protein markers of various brain cells, such as neurons, astrocytes, and vascular cells (endothelial cells and smooth muscle cells) at 2 months, and increases in neural, glial, vascular, and channel-related gene expression over a 2-month differentiation course. Two-month organoids exhibited action potentials, multiple channel activities, and functional electrophysiological responses to the anesthetic agent propofol. A bioinformatics analysis of 20,723 gene expression profiles showed the similar distance of gene profiles in cerebral organoids to fetal and adult brain tissues. The subsequent Ingenuity Pathway Analysis (IPA) of select canonical pathways related to neural development, network formation, and electrophysiological signaling, revealed that only calcium signaling, cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling in neurons, glutamate receptor signaling, and synaptogenesis signaling were predicted to be downregulated in cerebral organoids relative to fetal samples. Nearly all cerebral organoid and fetal pathway phenotypes were predicted to be downregulated compared with adult tissue. Conclusions: This novel study highlights dynamic development, cellular heterogeneity and electrophysiological activity. In particular, for the first time, electrophysiological drug response recapitulates what occurs in vivo, and neural characteristics are predicted to be highly similar to the human brain, further supporting the promising application of the cerebral organoid system for the modeling of the human brain in health and disease. Additionally, the studies from these characterizations of cerebral organoids in multiple levels and the findings from gene comparisons between cerebral organoids and humans (fetuses and adults) help us better understand this cerebral organoid-based cutting-edge platform and its wide uses in modeling human brain in terms of health and disease, development, and testing drug efficacy and toxicity. Full article
(This article belongs to the Special Issue Stem Cell-based Therapy and Disease Modeling)
Show Figures

Graphical abstract

18 pages, 1961 KiB  
Article
Arachidonic Acid Evokes an Increase in Intracellular Ca2+ Concentration and Nitric Oxide Production in Endothelial Cells from Human Brain Microcirculation
by Roberto Berra-Romani, Pawan Faris, Sharon Negri, Laura Botta, Tullio Genova and Francesco Moccia
Cells 2019, 8(7), 689; https://doi.org/10.3390/cells8070689 - 9 Jul 2019
Cited by 32 | Viewed by 5104
Abstract
It has long been known that the conditionally essential polyunsaturated arachidonic acid (AA) regulates cerebral blood flow (CBF) through its metabolites prostaglandin E2 and epoxyeicosatrienoic acid, which act on vascular smooth muscle cells and pericytes to vasorelax cerebral microvessels. However, AA may also [...] Read more.
It has long been known that the conditionally essential polyunsaturated arachidonic acid (AA) regulates cerebral blood flow (CBF) through its metabolites prostaglandin E2 and epoxyeicosatrienoic acid, which act on vascular smooth muscle cells and pericytes to vasorelax cerebral microvessels. However, AA may also elicit endothelial nitric oxide (NO) release through an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we adopted Ca2+ and NO imaging, combined with immunoblotting, to assess whether AA induces intracellular Ca2+ signals and NO release in the human brain microvascular endothelial cell line hCMEC/D3. AA caused a dose-dependent increase in [Ca2+]i that was mimicked by the not-metabolizable analogue, eicosatetraynoic acid. The Ca2+ response to AA was patterned by endoplasmic reticulum Ca2+ release through type 3 inositol-1,4,5-trisphosphate receptors, lysosomal Ca2+ mobilization through two-pore channels 1 and 2 (TPC1-2), and extracellular Ca2+ influx through transient receptor potential vanilloid 4 (TRPV4). In addition, AA-evoked Ca2+ signals resulted in robust NO release, but this signal was considerably delayed as compared to the accompanying Ca2+ wave and was essentially mediated by TPC1-2 and TRPV4. Overall, these data provide the first evidence that AA elicits Ca2+-dependent NO release from a human cerebrovascular endothelial cell line, but they seemingly rule out the possibility that this NO signal could acutely modulate neurovascular coupling. Full article
(This article belongs to the Special Issue Phospholipids: Dynamic Lipid Signaling in Health and Diseases)
Show Figures

Figure 1

Back to TopTop