Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hop biomass after harvest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3088 KiB  
Article
Relationship Between Dynamics of Plant Biometric Parameters and Leaf Area Index of Hop (Humulus lupulus L.) Plants
by Václav Brant, Karel Krofta, Petr Zábranský, Pavel Hamouz, Pavel Procházka, Jiří Dreksler, Milan Kroulík and Gabriela Fritschová
Agronomy 2025, 15(4), 823; https://doi.org/10.3390/agronomy15040823 - 26 Mar 2025
Viewed by 480
Abstract
Biometric parameters of hop plants were studied over a three-year period on the Czech variety Premiant grown in the Žatec (Saaz) hop-growing region under an organic farming regime. Initially, only bine leaves developed, with lateral leaves emerging during the third growing month (June). [...] Read more.
Biometric parameters of hop plants were studied over a three-year period on the Czech variety Premiant grown in the Žatec (Saaz) hop-growing region under an organic farming regime. Initially, only bine leaves developed, with lateral leaves emerging during the third growing month (June). Their leaf area at the time of harvest was larger than the bine leaves. The moment when the area size of both leaf categories was the same, designated as the breaking point (BP), was determined in the interval 181–195 DOY (day of year). The leaf area (LA) measured using infrared imaging and gravimetric methods yielded comparable results, with correlation coefficients of 0.93 and 0.96, respectively. The total leaf area of one hop plant (LA) with four trained bines, which developed dynamically during ontogeny, was 10.45 m2 (2019), 6.65 m2 (2020), and 12.04 m2 (2021) in the harvest period. With a spacing of 3 m × 1 m, the corresponding Leaf Area Index (LAI) values were 3.5, 2.2 and 4.0 in the harvest season. Therefore, they are comparable to other crops such as maize or sorghum. Regression equations were calculated to determine the dry biomass of bine and lateral leaves depending on DOY. Correlations between the dry mass of leaves and the size of the leaf area for both bine and lateral leaves were also evaluated. This work also contains data on the mass proportions of the main plant organs (bine, leaves, cones). Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 3059 KiB  
Article
On-Farm Composting of Hop Plant Green Waste—Chemical and Biological Value of Compost
by Lucija Luskar, Julija Polanšek, Aleš Hladnik and Barbara Čeh
Appl. Sci. 2022, 12(9), 4190; https://doi.org/10.3390/app12094190 - 21 Apr 2022
Cited by 7 | Viewed by 4330
Abstract
Green agro waste can be turned into compost, which can then be used as an organic fertilizer, thus reducing the environmental impact of food and feed production. This research is focused on finding a feasible on-farm composting treatment of plant biomass to produce [...] Read more.
Green agro waste can be turned into compost, which can then be used as an organic fertilizer, thus reducing the environmental impact of food and feed production. This research is focused on finding a feasible on-farm composting treatment of plant biomass to produce high-quality compost. Three different composting treatments were prepared and followed (with different additives at the start—biochar (BC) and effective microorganisms (EM), no additive (CON); covering and not covering the pile; different start particles size). Samples were analysed for nutrient concentrations, phytotoxicity and bacterial and fungal presence after seven months of composting. In 100 g of dry matter, the average compost contained 2.7 g, 0.38 g and 1.08 g of N, P and K, respectively. All investigated treatments contained more than 2% of total nitrogen in dry mass, so they could be used as a fertilizer. The highest nutrient content was observed in compost of small particle size (˂5 cm) and added biochar (11 kg/t fresh biomass). However, this compost had the least bacteria and fungi due to very high temperatures in the thermophilic phase of this pile. According to the radish germination index, the prepared composts have no phytotoxic properties and are stable and ready to use in plant production. Taking the cress germination test into consideration, they provided a nutrient-rich and biostimulative soil amendment. All three final composts were stable in terms of respiration rate, growth and germination tests. Results have shown that hop biomass after harvest has great potential for composting. Full article
(This article belongs to the Special Issue Frontier Research in Hop)
Show Figures

Figure 1

16 pages, 3443 KiB  
Article
The Quantity and Composition of Leachate from Hop Plant Biomass during Composting Process
by Barbara Čeh, Lucija Luskar, Aleš Hladnik, Žan Trošt, Julija Polanšek and Boštjan Naglič
Appl. Sci. 2022, 12(5), 2375; https://doi.org/10.3390/app12052375 - 24 Feb 2022
Cited by 4 | Viewed by 3221
Abstract
Technology that would result in a high-quality product with minimal environmental impact throughout the on-site composting process of hop biomass after harvest has not yet been developed. It is crucial to introduce composting practices that do not result in a detrimental leachate impact. [...] Read more.
Technology that would result in a high-quality product with minimal environmental impact throughout the on-site composting process of hop biomass after harvest has not yet been developed. It is crucial to introduce composting practices that do not result in a detrimental leachate impact. Three different composting procedures that vary in terms of initial biomass particle size, additives, and pile covering were investigated. Each pile was built from 15 t of fresh hop biomass after harvest (leaves and stems), leachate was collected during the composting season (September to the end of April), and biomass was sampled and analyzed to identify good practices as well as gaps that need to be filled. Leachate quantity differed significantly in terms of the composting procedure and time stamps. There was a strong linear correlation between the amount of precipitation and leachate quantity (0.86), NH4 leached amount (0.87), and total N leached amount (0.92), but not the total P amount. The composting procedure had a significant impact on the quantity of the NH4 leached amount. The majority of the NH4 was lost in the second month of composting. The maturation phase was the most critical for NO3 loss since it had the highest amount of leached NO3 and the greatest variances among the composting protocols. Considering leachate it is recommended that a membrane is used at all times during the maturation phase as well as during any heavy precipitation expected in the thermophilic phase. Whether the cover is also needed for the entire duration of the thermophilic phase (due to emission) is a matter of further research. Full article
(This article belongs to the Special Issue Frontier Research in Hop)
Show Figures

Figure 1

Back to TopTop