Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hom-Lie groups

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 324 KiB  
Article
(Almost) Ricci Solitons in Lorentzian–Sasakian Hom-Lie Groups
by Esmaeil Peyghan, Leila Nourmohammadifar, Akram Ali and Ion Mihai
Axioms 2024, 13(10), 693; https://doi.org/10.3390/axioms13100693 - 4 Oct 2024
Viewed by 775
Abstract
We study Lorentzian contact and Lorentzian–Sasakian structures in Hom-Lie algebras. We find that the three-dimensional sl(2,R) and Heisenberg Lie algebras provide examples of such structures, respectively. Curvature tensor properties in Lorentzian–Sasakian Hom-Lie algebras are investigated. If v is [...] Read more.
We study Lorentzian contact and Lorentzian–Sasakian structures in Hom-Lie algebras. We find that the three-dimensional sl(2,R) and Heisenberg Lie algebras provide examples of such structures, respectively. Curvature tensor properties in Lorentzian–Sasakian Hom-Lie algebras are investigated. If v is a contact 1-form, conditions under which the Ricci curvature tensor is v-parallel are given. Ricci solitons for Lorentzian–Sasakian Hom-Lie algebras are also studied. It is shown that a Ricci soliton vector field ζ is conformal whenever the Lorentzian–Sasakian Hom-Lie algebra is Ricci semisymmetric. To illustrate the use of the theory, a two-parameter family of three-dimensional Lorentzian–Sasakian Hom-Lie algebras which are not Lie algebras is given and their Ricci solitons are computed. Full article
(This article belongs to the Special Issue Differential Geometry and Its Application, 3rd Edition)
16 pages, 303 KiB  
Article
Generalized Reynolds Operators on Hom-Lie Triple Systems
by Yunpeng Xiao, Wen Teng and Fengshan Long
Symmetry 2024, 16(3), 262; https://doi.org/10.3390/sym16030262 - 21 Feb 2024
Viewed by 1723
Abstract
In this paper, we first introduce the notion of generalized Reynolds operators on Hom-Lie triple systems associated to a representation and a 3-cocycle. Then, we develop a cohomology of generalized Reynolds operators on Hom-Lie triple systems. As applications, we use the first cohomology [...] Read more.
In this paper, we first introduce the notion of generalized Reynolds operators on Hom-Lie triple systems associated to a representation and a 3-cocycle. Then, we develop a cohomology of generalized Reynolds operators on Hom-Lie triple systems. As applications, we use the first cohomology group to classify linear deformations and we study the obstruction class of an extendable order n deformation. Finally, we introduce and investigate Hom-NS-Lie triple system as the underlying structure of generalized Reynolds operators on Hom-Lie triple systems. Full article
(This article belongs to the Section Mathematics)
13 pages, 1588 KiB  
Article
Dynamics of Fricke–Painlevé VI Surfaces
by Michel Planat, David Chester and Klee Irwin
Dynamics 2024, 4(1), 1-13; https://doi.org/10.3390/dynamics4010001 - 2 Jan 2024
Cited by 2 | Viewed by 1911
Abstract
The symmetries of a Riemann surface Σ{ai} with n punctures ai are encoded in its fundamental group π1(Σ). Further structure may be described through representations (homomorphisms) of π1 over a Lie [...] Read more.
The symmetries of a Riemann surface Σ{ai} with n punctures ai are encoded in its fundamental group π1(Σ). Further structure may be described through representations (homomorphisms) of π1 over a Lie group G as globalized by the character variety C=Hom(π1,G)/G. Guided by our previous work in the context of topological quantum computing (TQC) and genetics, we specialize on the four-punctured Riemann sphere Σ=S2(4) and the ‘space-time-spin’ group G=SL2(C). In such a situation, C possesses remarkable properties: (i) a representation is described by a three-dimensional cubic surface Va,b,c,d(x,y,z) with three variables and four parameters; (ii) the automorphisms of the surface satisfy the dynamical (non-linear and transcendental) Painlevé VI equation (or PVI); and (iii) there exists a finite set of 1 (Cayley–Picard)+3 (continuous platonic)+45 (icosahedral) solutions of PVI. In this paper, we feature the parametric representation of some solutions of PVI: (a) solutions corresponding to algebraic surfaces such as the Klein quartic and (b) icosahedral solutions. Applications to the character variety of finitely generated groups fp encountered in TQC or DNA/RNA sequences are proposed. Full article
Show Figures

Figure 1

33 pages, 532 KiB  
Review
Nonassociative Algebras, Rings and Modules over Them
by Sergey Victor Ludkowski
Mathematics 2023, 11(7), 1714; https://doi.org/10.3390/math11071714 - 3 Apr 2023
Viewed by 2652
Abstract
The review is devoted to nonassociative algebras, rings and modules over them. The main actual and recent trends in this area are described. Works are reviewed on radicals in nonassociative rings, nonassociative algebras related with skew polynomials, commutative nonassociative algebras and their modules, [...] Read more.
The review is devoted to nonassociative algebras, rings and modules over them. The main actual and recent trends in this area are described. Works are reviewed on radicals in nonassociative rings, nonassociative algebras related with skew polynomials, commutative nonassociative algebras and their modules, nonassociative cyclic algebras, rings obtained as nonassociative cyclic extensions, nonassociative Ore extensions of hom-associative algebras and modules over them, and von Neumann finiteness for nonassociative algebras. Furthermore, there are outlined nonassociative algebras and rings and modules over them related to harmonic analysis on nonlocally compact groups, nonassociative algebras with conjugation, representations and closures of nonassociative algebras, and nonassociative algebras and modules over them with metagroup relations. Moreover, classes of Akivis, Sabinin, Malcev, Bol, generalized Cayley–Dickson, and Zinbiel-type algebras are provided. Sources also are reviewed on near to associative nonassociative algebras and modules over them. Then, there are the considered applications of nonassociative algebras and modules over them in cryptography and coding, and applications of modules over nonassociative algebras in geometry and physics. Their interactions are discussed with more classical nonassociative algebras, such as of the Lie, Jordan, Hurwitz and alternative types. Full article
Back to TopTop