Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = histone modification (HM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4661 KiB  
Article
Identification and Characterization of Histone Modification Gene Families and Their Expression Patterns During Pod and Seed Development in Peanut
by Yingying Chang, Yohannes Gelaye, Ruonan Yao, Ping Yang, Jihua Li, Nian Liu, Li Huang, Xiaojing Zhou, Weigang Chen, Bolun Yu, Huifang Jiang, Boshou Liao, Yong Lei and Huaiyong Luo
Int. J. Mol. Sci. 2025, 26(6), 2591; https://doi.org/10.3390/ijms26062591 - 13 Mar 2025
Viewed by 642
Abstract
Histone methylation and acetylation play potential roles in plant growth and development through various histone modification (HM) genes. However, studies of HM genes are still limited in peanut (Arachis hypogaea L.), a globally important oilseed crop. Here, comprehensive identification and investigation of [...] Read more.
Histone methylation and acetylation play potential roles in plant growth and development through various histone modification (HM) genes. However, studies of HM genes are still limited in peanut (Arachis hypogaea L.), a globally important oilseed crop. Here, comprehensive identification and investigation of HM genes were performed using the whole genome of peanut, and a total of 207 AhHMs encoding 108 histone methyltransferases, 51 histone demethylases, 16 histone acetylases, and 32 histone deacetylases were identified. Detailed analysis of these AhHMs, including chromosome locations, gene structures, protein motifs, and protein–protein interactions, was performed. Tandem, segmental, transposed, dispersed, and whole-genome duplications were involved in the evolution and expansion of the HM gene families in peanut. Ka/Ks analysis indicated that the AhHMs underwent purifying selection. The expression profiles of the 207 AhHMs were investigated during the pod and seed development stages on the basis of the transcriptome sequencing results. Quantitative real-time PCR confirmed that eight AhHMs were differentially expressed during pod and seed development. These results provide data support for further studying the epigenetic mechanism of peanut histones, deepen the understanding of seed development, and provide a new direction for the cultivation of more high-yield and high-quality peanut varieties. Full article
(This article belongs to the Special Issue Molecular and Epigenetic Regulation in Seed Development)
Show Figures

Figure 1

17 pages, 12831 KiB  
Article
The Development of Prenatal Muscle Satellite Cells (MuSCs) and Their Epigenetic Modifications During Skeletal Muscle Development in Yak Fetus
by Guoxiong Nan, Wei Peng, Shangrong Xu, Guowen Wang and Jun Zhang
Biology 2024, 13(12), 1091; https://doi.org/10.3390/biology13121091 - 23 Dec 2024
Viewed by 974
Abstract
To investigate prenatal muscle satellite cell (MuSC) development and the associated epigenetic modifications in yak. Here, we conducted morphological and protein co-localization analyses of fetal longissimus dorsi muscle at various developmental stages using histology and immunofluorescence staining methods. Our study observed that primary [...] Read more.
To investigate prenatal muscle satellite cell (MuSC) development and the associated epigenetic modifications in yak. Here, we conducted morphological and protein co-localization analyses of fetal longissimus dorsi muscle at various developmental stages using histology and immunofluorescence staining methods. Our study observed that primary muscle fibers began forming at 40 days of gestation, fully developed by 11 weeks, and secondary muscle fibers were predominantly formed by around 105 days. Throughout development, MuSCs were mainly located between the muscle fiber membrane and the basement membrane, acting as a reserve for the stem cell pool. MuSCs appeared within myotubes only during critical phases of primary and secondary muscle fiber formation. The proliferation of MuSCs gradually decreases until birth. MuSCs with 5mC modification show a trend of increasing first and then decreasing. MuSCs with 5hmC modification also present a dynamic change trend. The 41st day and 11th week are the critical periods for the changes of both. From the 11th week to around the 110th day of gestation, the modification effect of histone H3K4me3 is crucial for MuSCs during the development of the fetal longissimus dorsi muscle. Combined, our data identify key time points for yak fetal skeletal muscle growth and development and demonstrate that DNA methylation and histone modifications in MuSCs are closely related to this process, offering a valuable basis for future research into the molecular mechanisms underlying yak muscle development. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

22 pages, 5857 KiB  
Article
Genome-Wide Analysis of the Histone Modification Gene (HM) Family and Expression Investigation during Anther Development in Rice (Oryza sativa L.)
by Yongxiang Huang, Jiawei Liu, Long Cheng, Duo Xu, Sijia Liu, Hanqiao Hu, Yu Ling, Rongchao Yang and Yueqin Zhang
Plants 2024, 13(17), 2496; https://doi.org/10.3390/plants13172496 - 6 Sep 2024
Viewed by 1360
Abstract
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification [...] Read more.
Histone modification plays a crucial role in chromatin remodeling and regulating gene expression, and participates in various biological processes, including plant development and responses to stress. Several gene families related to histone modification have been reported in various plant species. However, the identification of members and their functions in the rice (Oryza sativa L.) histone modification gene family (OsHM) at the whole-genome level remains unclear. In this study, a total of 130 OsHMs were identified through a genome-wide analysis. The OsHM gene family can be classified into 11 subfamilies based on a phylogenetic analysis. An analysis of the genes structures and conserved motifs indicates that members of each subfamily share specific conserved protein structures, suggesting their potential conserved functions. Molecular evolutionary analysis reveals that a significant number of OsHMs proteins originated from gene duplication events, particularly segmental duplications. Additionally, transcriptome analysis demonstrates that OsHMs are widely expressed in various tissues of rice and are responsive to multiple abiotic stresses. Fourteen OsHMs exhibit high expression in rice anthers and peaked at different pollen developmental stages. RT-qPCR results further elucidate the expression patterns of these 14 OsHMs during different developmental stages of anthers, highlighting their high expression during the meiosis and tetrad stages, as well as in the late stage of pollen development. Remarkably, OsSDG713 and OsSDG727 were further identified to be nucleus-localized. This study provides a fundamental framework for further exploring the gene functions of HMs in plants, particularly for researching their functions and potential applications in rice anthers’ development and male sterility. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

27 pages, 11596 KiB  
Article
Genome-Wide Identification of Osmanthus fragrans Histone Modification Genes and Analysis of Their Expression during the Flowering Process and under Azacytidine and Ethylene Treatments
by Hui Xia, Yingting Zhang, Xiang Chen, Xiangling Zeng, Xuan Cai, Zeqing Li, Hongguo Chen, Jie Yang and Jingjing Zou
Plants 2024, 13(6), 777; https://doi.org/10.3390/plants13060777 - 9 Mar 2024
Cited by 2 | Viewed by 1675
Abstract
Histone acetylation and methylation, governed by various histone modification (HM) gene families, are vital for plant biological processes. However, there are limited studies that have explored HMs in ornamental horticultural trees, including sweet osmanthus (Osmanthus fragrans). We performed genome-wide search and [...] Read more.
Histone acetylation and methylation, governed by various histone modification (HM) gene families, are vital for plant biological processes. However, there are limited studies that have explored HMs in ornamental horticultural trees, including sweet osmanthus (Osmanthus fragrans). We performed genome-wide search and identified 208 OfHMs, encompassing 81 histone methyltransferases (OfHMTs), 51 histone demethylases (OfHDMs), 49 histone acetyltransferases (OfHATs) and 27 histone deacetylases (HDACs). Our comprehensive analysis covered chromosome locations, gene structures, conserved domains, cis-acting elements, phylogenetic comparisons, protein interaction networks and functional enrichment pathways for these gene families. Additionally, tandem and fragment replications were unveiled as contributors to the expansion of OfHMs, with some genes exhibiting positive selection. Furthermore, we examined OfHM expression profiles across various tissues and flowering stages, and under 5′-azacytidine (Aza) and ethylene treatments. Most OfHMs displayed heightened expression in leaves, and were downregulated during the flower opening and senescence stages, including OfPRMTs, OfHDTs, OfHDAs, OfSRTs, OfJMJs and OfHAGs; 75.86% and 80.77% of the differentially expressed OfHMs were upregulated after Aza and ethylene treatments, including OfHAGs, OfHDAs and OfSDGs. This study offers a comprehensive analysis of the OfHM gene family, which indicated their potential involvement in ethylene and Aza responses, and in the flowering process. These findings provide valuable insights into the role of OfHMs in flowering and stress responses. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Graphical abstract

25 pages, 1608 KiB  
Review
Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications
by Mukhtar Iderawumi Abdulraheem, Yani Xiong, Abiodun Yusuff Moshood, Gregorio Cadenas-Pliego, Hao Zhang and Jiandong Hu
Plants 2024, 13(2), 163; https://doi.org/10.3390/plants13020163 - 7 Jan 2024
Cited by 62 | Viewed by 14390
Abstract
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to [...] Read more.
Plant stress is a significant challenge that affects the development, growth, and productivity of plants and causes an adverse environmental condition that disrupts normal physiological processes and hampers plant survival. Epigenetic regulation is a crucial mechanism for plants to respond and adapt to stress. Several studies have investigated the role of DNA methylation (DM), non-coding RNAs, and histone modifications in plant stress responses. However, there are various limitations or challenges in translating the research findings into practical applications. Hence, this review delves into the recent recovery, implications, and applications of epigenetic regulation in response to plant stress. To better understand plant epigenetic regulation under stress, we reviewed recent studies published in the last 5–10 years that made significant contributions, and we analyzed the novel techniques and technologies that have advanced the field, such as next-generation sequencing and genome-wide profiling of epigenetic modifications. We emphasized the breakthrough findings that have uncovered specific genes or pathways and the potential implications of understanding plant epigenetic regulation in response to stress for agriculture, crop improvement, and environmental sustainability. Finally, we concluded that plant epigenetic regulation in response to stress holds immense significance in agriculture, and understanding its mechanisms in stress tolerance can revolutionize crop breeding and genetic engineering strategies, leading to the evolution of stress-tolerant crops and ensuring sustainable food production in the face of climate change and other environmental challenges. Future research in this field will continue to unveil the intricacies of epigenetic regulation and its potential applications in crop improvement. Full article
(This article belongs to the Special Issue Multi-Omics Analysis of Plant under Abiotic Stress)
Show Figures

Figure 1

18 pages, 2665 KiB  
Article
Neuroprotective Epigenetic Changes Induced by Maternal Treatment with an Inhibitor of Soluble Epoxide Hydrolase Prevents Early Alzheimer′s Disease Neurodegeneration
by Clara Bartra, Alba Irisarri, Ainhoa Villoslada, Rubén Corpas, Samuel Aguirre, Elisa García-Lara, Cristina Suñol, Mercè Pallàs, Christian Griñán-Ferré and Coral Sanfeliu
Int. J. Mol. Sci. 2022, 23(23), 15151; https://doi.org/10.3390/ijms232315151 - 2 Dec 2022
Cited by 6 | Viewed by 2940
Abstract
Modulation of Alzheimer′s disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N′-[4-(trifluoromethoxy)phenyl] urea (TPPU), [...] Read more.
Modulation of Alzheimer′s disease (AD) risk begins early in life. During embryo development and postnatal maturation, the brain receives maternal physiological influences and establishes epigenetic patterns that build its level of resilience to late-life diseases. The soluble epoxide hydrolase inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N′-[4-(trifluoromethoxy)phenyl] urea (TPPU), reported as ant-inflammatory and neuroprotective against AD pathology in the adult 5XFAD mouse model of AD, was administered to wild-type (WT) female mice mated to heterozygous 5XFAD males during gestation and lactation. Two-month-old 5XFAD male and female offspring of vehicle-treated dams showed memory loss as expected. Remarkably, maternal treatment with TPPU fully prevented memory loss in 5XFAD. TPPU-induced brain epigenetic changes in both WT and 5XFAD mice, modulating global DNA methylation (5-mC) and hydroxymethylation (5-hmC) and reducing the gene expression of some histone deacetylase enzymes (Hdac1 and Hdac2), might be on the basis of the long-term neuroprotection against cognitive impairment and neurodegeneration. In the neuropathological analysis, both WT and 5XFAD offspring of TPPU-treated dams showed lower levels of AD biomarkers of tau hyperphosphorylation and microglia activation (Trem2) than the offspring of vehicle-treated dams. Regarding sex differences, males and females were similarly protected by maternal TPPU, but females showed higher levels of AD risk markers of gliosis and neurodegeneration. Taken together, our results reveal that maternal treatment with TPPU impacts in preventing or delaying memory loss and AD pathology by inducing long-term modifications in the epigenetic machinery and its marks. Full article
(This article belongs to the Special Issue Metabolism and the Biological Functions of Oxylipins)
Show Figures

Graphical abstract

17 pages, 2846 KiB  
Article
Alterations in the Genomic Distribution of 5hmC in In Vivo Aged Human Skin Fibroblasts
by Paulina Kołodziej-Wojnar, Joanna Borkowska, Zofia Wicik, Anna Domaszewska-Szostek, Jacek Połosak, Marta Cąkała-Jakimowicz, Olga Bujanowska and Monika Puzianowska-Kuznicka
Int. J. Mol. Sci. 2021, 22(1), 78; https://doi.org/10.3390/ijms22010078 - 23 Dec 2020
Cited by 11 | Viewed by 3891
Abstract
5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22–35 years and 74–94 years. Global quantities of methylation-related DNA modifications were [...] Read more.
5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22–35 years and 74–94 years. Global quantities of methylation-related DNA modifications were estimated by the dot blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age (DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels of DNA modifications were not associated with age. We identified numerous DHMRs that were enriched within introns and intergenic regions and most commonly associated with the H3K4me1 histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However, only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their expression. These age-related differences were not associated with changes in the expression of any of the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified DHMRs are, likely, marker changes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 974 KiB  
Article
Application of the High-Throughput TAB-Array for the Discovery of Novel 5-Hydroxymethylcytosine Biomarkers in Pancreatic Ductal Adenocarcinoma
by Chang Zeng, Zhou Zhang, Jun Wang, Brian C-H Chiu, Lifang Hou and Wei Zhang
Epigenomes 2019, 3(3), 16; https://doi.org/10.3390/epigenomes3030016 - 10 Aug 2019
Cited by 12 | Viewed by 4435
Abstract
The clinical outcomes of pancreatic ductal adenocarcinoma (PDAC) remain dismal, with an estimated five-year survival rate of less than 5%. Early detection and prognostic approaches, including robust biomarkers for PDAC, are critical for improving patient survival. Our goal was to explore the biomarker [...] Read more.
The clinical outcomes of pancreatic ductal adenocarcinoma (PDAC) remain dismal, with an estimated five-year survival rate of less than 5%. Early detection and prognostic approaches, including robust biomarkers for PDAC, are critical for improving patient survival. Our goal was to explore the biomarker potential of 5-hydroxymethylcytosines (5hmC), an emerging epigenetic marker with a distinct role in cancer pathobiology, yet under-investigated, due largely to technical constraints relating to PDAC. The TET-assisted bisulfite (TAB)-Array assay represents state-of-the-art technology and was used to directly profile 5hmC at single-base resolution with the Illumina EPIC array (~850,000 cytosine modification sites) in 17 pairs of tumor/adjacent tissue samples from US patients collected at the University of Chicago Medical Center. The TAB-Array data were analyzed to explore the genomic distribution of 5hmC and evaluate whether 5hmC markers were differentially modified between tumors and adjacent tissues. We demonstrated distinctive distribution patterns of 5hmC in tissue samples from PDAC patients relative to cis-regulatory elements (e.g., histone modification marks for enhancers), indicating their potential gene regulatory relevance. Substantial differences in 5hmC-modified CpG sites were detected between tumors and adjacent tissues in genes related to cancer pathobiology. The detected 5hmC-contaning marker genes also showed prognostic value for overall survival in the US patients with PDAC from the Cancer Genome Atlas Project. This study demonstrated the technical feasibility of the TAB-Array approach in cancer biomarker discovery and the biomarker potential of 5hmC for PDAC. Future studies using tissues and/or liquid biopsies may include 5hmC as a potential epigenetic biomarker target for PDAC. Full article
Show Figures

Figure 1

54 pages, 1803 KiB  
Review
DNA Modifications: Function and Applications in Normal and Disease States
by Vichithra R. B. Liyanage, Jessica S. Jarmasz, Nanditha Murugeshan, Marc R. Del Bigio, Mojgan Rastegar and James R. Davie
Biology 2014, 3(4), 670-723; https://doi.org/10.3390/biology3040670 - 22 Oct 2014
Cited by 122 | Viewed by 18753
Abstract
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls [...] Read more.
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed. Full article
(This article belongs to the Special Issue DNA Methylation)
Show Figures

Figure 1

Back to TopTop