Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high-speed no-till seeder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4024 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 - 1 Aug 2025
Viewed by 199
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

19 pages, 15207 KiB  
Article
Sowing Depth Monitoring System for High-Speed Precision Planters Based on Multi-Sensor Data Fusion
by Song Wang, Shujuan Yi, Bin Zhao, Yifei Li, Shuaifei Li, Guixiang Tao, Xin Mao and Wensheng Sun
Sensors 2024, 24(19), 6331; https://doi.org/10.3390/s24196331 - 30 Sep 2024
Cited by 6 | Viewed by 1450
Abstract
High-speed precision planters are subject to high-speed (12~16 km/h) operation due to terrain undulation caused by mechanical vibration and sensor measurement errors caused by the sowing depth monitoring system’s accuracy reduction problems. Thus, this study investigates multi-sensor data fusion technology based on the [...] Read more.
High-speed precision planters are subject to high-speed (12~16 km/h) operation due to terrain undulation caused by mechanical vibration and sensor measurement errors caused by the sowing depth monitoring system’s accuracy reduction problems. Thus, this study investigates multi-sensor data fusion technology based on the sowing depth monitoring systems of high-speed precision planters. Firstly, a sowing depth monitoring model comprising laser, ultrasonic, and angle sensors as the multi-sensor monitoring unit is established. Secondly, these three single sensors are filtered using the Kalman filter. Finally, a multi-sensor data fusion algorithm for optimising four key parameters in the extended Kalman filter (EKF) using an improved sparrow search algorithm (ISSA) is proposed. Subsequently, the filtered data from the three single sensors are integrated to address the issues of mechanical vibration interference and sensor measurement errors. In order to ascertain the superiority of the ISSA-EKF, the ISSA-EKF and SSA-EKF are simulated, and their values are compared with the original monitoring value of the sensor and the filtered sowing depth value. The simulation test demonstrates that the ISSA-EKF-based sowing depth monitoring algorithm for high-speed precision planters, with a mean absolute error (MAE) of 0.083 cm, root mean square error (RMSE) of 0.103 cm, and correlation coefficient (R) of 0.979 achieves high-precision monitoring. This is evidenced by a significant improvement in accuracy when compared with the original monitoring value of the sensor, the filtered value, and the SSA-EKF. The results of a field test demonstrate that the ISSA-EKF-based sowing depth monitoring system for high-speed precision planters enhances the precision and reliability of the monitoring system when compared with the three single-sensor monitoring values. The average MAE and RMSE are reduced by 0.071 cm and 0.075 cm, respectively, while the average R is improved by 0.036. This study offers a theoretical foundation for the advancement of sowing depth monitoring systems for high-speed precision planters. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

18 pages, 5584 KiB  
Article
Optimization and Design of Disc-Type Furrow Opener of No-Till Seeder for Green Manure Crops in South Xinjiang Orchards
by Rui Ye, Xueting Ma, Jinfei Zhao, Jiean Liao, Xinying Liu, Linqiao Xi and Guangdong Su
Agriculture 2023, 13(8), 1474; https://doi.org/10.3390/agriculture13081474 - 25 Jul 2023
Cited by 5 | Viewed by 2292
Abstract
For the issues of the poor stability of the furrow opener depth, large soil backfill depth, and inconsistent furrow shape on a no-till seeder for planting green manure between rows of orchards in South Xinjiang, a double-disc, corrugated furrow opener is designed. This [...] Read more.
For the issues of the poor stability of the furrow opener depth, large soil backfill depth, and inconsistent furrow shape on a no-till seeder for planting green manure between rows of orchards in South Xinjiang, a double-disc, corrugated furrow opener is designed. This paper analyzes the law of soil movement between corrugated double-disc and traditional double-disc furrow openers using the discrete element method (DEM) and concludes that the corrugation width and number of corrugations on the corrugated double-disc furrow opener are the primary factors affecting furrowing operation. When the number of corrugations is sixteen, the forward speed is six kilometers per hour, and when the corrugation width is seventeen and a half millimeters, the simulation operation parameters are optimal. The soil-bin validation experiment results are as follows: Under the condition of an 80 mm furrow depth, the stability of the average furrow depth is enhanced by 3.54%, the working resistance and the average disrupted soil area are increased by 26.16 N and 220 mm2, respectively, and the backfill depth is decreased by 10.98 mm. The operation effect of a double-disc furrow opener with corrugated discs is enhanced by the high stability of the furrow depth, low working resistance, and small backfill depth. This study provides a theoretical foundation for the design and optimization of the furrow opener components of a no-till seeder for planting green manure between rows of orchards. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 6705 KiB  
Article
Design and Test of Sowing Depth Measurement and Control System for No-Till Corn Seeder Based on Integrated Electro-Hydraulic Drive
by Liming Zhou, Yihua Ma, Haiyan Zhou, Kang Niu, Bo Zhao, Liguo Wei, Shenghe Bai, Yuankun Zheng and Weipeng Zhang
Appl. Sci. 2023, 13(10), 5823; https://doi.org/10.3390/app13105823 - 9 May 2023
Cited by 11 | Viewed by 3270
Abstract
An electro-hydraulic profiling mechanism has been gradually applied to provide suitable downforce for a no-till row unit and to ensure the consistency of the seed sowing depth. In order to improve the control effect of the sowing depth system and solve the problems [...] Read more.
An electro-hydraulic profiling mechanism has been gradually applied to provide suitable downforce for a no-till row unit and to ensure the consistency of the seed sowing depth. In order to improve the control effect of the sowing depth system and solve the problems of a complex structure, scattered valve sets and equipment suitability of an existing electro-hydraulic row unit, this paper takes the 2BJ-470B no-till row unit as the carrier and innovatively designs an integrated pressure-reducing cylinder (IPRC) based on electro-hydraulic technology by analyzing the sowing depth control process of an electro-hydraulic seeder. In addition, we develop the integrated electro-hydraulic-driven sowing depth measurement and control system. Combined with the feedforward compensation PID control algorithm, the dynamic regulation of the downforce is realized with the IPRC. The field test shows that under the setting of a sowing depth of 50 mm and a vehicle speed of 9~10 km·h−1, the qualified rate of the sowing depth under the three adjustment methods of self-weight adjustment, spring adjustment and electro-hydraulic adjustment is 89.2%, 96.7% and 98.6%, respectively, and the corresponding maximum coefficient of variation of the sowing depth is 16.7%, 12.9% and 6.4%, respectively. The seed groove environmental qualification rate (SFEQ) is further analyzed in combination with the soil compaction, and the mean values of the qualification rates of the three control methods at different vehicle speeds are 88.3%, 91.6% and 98.6%, respectively. The integrated electro-hydraulic-driven row unit has significant advantages over mechanical and self-weight regulation, and its whole machine integration degree and high adaptability realize the comprehensive control of the sowing depth and soil compaction strength. Full article
Show Figures

Figure 1

Back to TopTop