Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = high-scale supersymmetry (SUSY)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 838 KiB  
Article
Decoding the Gaugino Code Naturally at High-Lumi LHC
by Howard Baer, Vernon Barger and Kairui Zhang
Particles 2024, 7(4), 927-938; https://doi.org/10.3390/particles7040056 - 17 Oct 2024
Cited by 1 | Viewed by 1120
Abstract
Natural supersymmetry with light higgsinos is most favored to emerge from the string landscape, since the volume of a scan parameter space shrinks to tiny volumes for electroweak unnatural models. Rather general arguments favor a landscape selection of soft SUSY breaking terms tilted [...] Read more.
Natural supersymmetry with light higgsinos is most favored to emerge from the string landscape, since the volume of a scan parameter space shrinks to tiny volumes for electroweak unnatural models. Rather general arguments favor a landscape selection of soft SUSY breaking terms tilted to large values, but they are tempered by the atomic principle that the derived value of the weak scale in each pocket universe lies not too far from its measured value in our universe. But, that leaves (at least) three different paradigms for gaugino masses in natural SUSY models: unified (as in nonuniversal Higgs models), anomaly mediation form (as in natural AMSB), and mirage mediation form (with comparable moduli- and anomaly-mediated contributions). We perform landscape scans for each of these, and we show that they populate different, but overlapping, positions in m(¯) and m(wino) space. The first of these may be directly measurable at high-lumi LHC via the soft opposite-sign dilepton plus jets plus E/T signature arising from higgsino pair production, while the second of these could be extracted from direct wino pair production, leading to same-sign diboson production. Full article
Show Figures

Figure 1

12 pages, 794 KiB  
Article
Weak Scale Supersymmetry Emergent from the String Landscape
by Howard Baer, Vernon Barger, Dakotah Martinez and Shadman Salam
Entropy 2024, 26(3), 275; https://doi.org/10.3390/e26030275 - 21 Mar 2024
Cited by 2 | Viewed by 1649
Abstract
Superstring flux compactifications can stabilize all moduli while leading to an enormous number of vacua solutions, each leading to different 4d laws of physics. While the string landscape provides at present the only plausible explanation for the size of the cosmological [...] Read more.
Superstring flux compactifications can stabilize all moduli while leading to an enormous number of vacua solutions, each leading to different 4d laws of physics. While the string landscape provides at present the only plausible explanation for the size of the cosmological constant, it may also predict the form of weak scale supersymmetry which is expected to emerge. Rather general arguments suggest a power-law draw to large soft terms, but these are subject to an anthropic selection of a not-too-large value for the weak scale. The combined selection allows one to compute relative probabilities for the emergence of supersymmetric models from the landscape. Models with weak scale naturalness appear most likely to emerge since they have the largest parameter space on the landscape. For finetuned models such as high-scale SUSY or split SUSY, the required weak scale finetuning shrinks their parameter space to tiny volumes, making them much less likely to appear compared to natural models. Probability distributions for sparticle and Higgs masses from natural models show a preference for Higgs mass mh125 GeV, with sparticles typically beyond the present LHC limits, in accord with data. From these considerations, we briefly describe how natural SUSY is expected to be revealed at future LHC upgrades. This article is a contribution to the Special Edition of the journal Entropy, honoring Paul Frampton on his 80th birthday. Full article
Show Figures

Figure 1

22 pages, 1233 KiB  
Article
Detecting Heavy Neutral SUSY Higgs Bosons Decaying to Sparticles at the High-Luminosity LHC
by Howard Baer, Vernon Barger, Xerxes Tata and Kairui Zhang
Symmetry 2023, 15(2), 548; https://doi.org/10.3390/sym15020548 - 18 Feb 2023
Cited by 6 | Viewed by 2232
Abstract
In supersymmetry (SUSY) models with low electroweak naturalness (natSUSY), which have been suggested to be the most likely version of SUSY to emerge from the string landscape, higgsinos are expected at the few hundred GeV scale, whilst electroweak gauginos inhabit the TeV scale. [...] Read more.
In supersymmetry (SUSY) models with low electroweak naturalness (natSUSY), which have been suggested to be the most likely version of SUSY to emerge from the string landscape, higgsinos are expected at the few hundred GeV scale, whilst electroweak gauginos inhabit the TeV scale. For TeV-scale heavy neutral SUSY Higgs bosons H and A, as currently required by LHC searches, the dominant decay modes of H,A are gaugino plus higgsino provided these decays are kinematically open. The light higgsinos decay to soft particles, so are largely invisible, whilst the gauginos decay to W, Z or h plus missing transverse energy (ET). Thus, we examine the viability of H,AW+ET, Z+ET and h+ET signatures at the high luminosity LHC (HL-LHC) in light of large standard model (SM) backgrounds from (mainly) tt¯, VV and Vh production (where V=W,Z). We also examine whether these signal channels can be enhanced over backgrounds by requiring the presence of an additional soft lepton from the decays of the light higgsinos. We find significant regions in the vicinity of mA12 TeV of the mA vs. tanβ plane, which can be probed at the high luminosity LHC, using these dominant signatures by HL-LHC at 5σ and at the 95% confidence level (CL). Full article
(This article belongs to the Special Issue Supersymmetry with Higgs Bosons Research)
Show Figures

Figure 1

19 pages, 10325 KiB  
Article
Searching for Supersymmetry at LHC Using the Complex-Network-Based Method of the Three-Dimensional Visibility-Graph
by Susmita Bhaduri and Anirban Bhaduri
Physics 2020, 2(3), 436-454; https://doi.org/10.3390/physics2030025 - 10 Sep 2020
Cited by 2 | Viewed by 3041
Abstract
For the last several decades, there has been tremendous interest in search for Supersymmetry (SUSY) in the area of high energy physics. At Large Hadron Collider (LHC), there have been continuous searches for SUSY for prompt and non-prompt, for particle R-parity conserving [...] Read more.
For the last several decades, there has been tremendous interest in search for Supersymmetry (SUSY) in the area of high energy physics. At Large Hadron Collider (LHC), there have been continuous searches for SUSY for prompt and non-prompt, for particle R-parity conserving and R-parity violating generation and decays. The limits obtained from these experiments and analyses for detection of the signatures of supersymmetric particles (LSP), revealed greater possibilities of such experiments in the collider. However, these signatures are usually derived under the assumption of bit optimistic conditions of the decaying process of sparticles to the final states. Moreover, SUSY might have been in a disguised state at lower mass-scales as a result of difficult and challenging mass spectra and mixed modes of decays. In this investigation, a novel method of 3-dimensional (3D) Visibility-Graph Analysis is proposed. This is an extension of Visibility Graph analysis of data series to perform the scaling analysis for 3D space. The experimental data spaces analyzed are made up of the component-space (in the X,Y and Z coordinates) of transverse momentum (pT) values taken out from 4-momenta of the signatures of the final state of the pair of mega-jets extracted from the multiJet primary pp collision data from Run B of 2010 at 7 TeV which was used for the search of SUSY using razor filter. The symmetry scaling and the inherent scaling behavior, scale-freeness of multi-particle production process is studied in terms of 3D Power-of-Scale-freeness-of-Visibility-Graph (3D-PSVG) extracted from the 3D Visibility Graphs constructed out of the experimental data spaces. The signature of SUSY may be identified by analyzing the scaling behavior and long-range correlation inherent in the 3D space made up of signatures of final state of multi-particles produced in the pp collision at 7 TeV, for the analysis of SUSY, which the conventional method of analyzing the spectrum of invariant mass or pT may miss. Full article
(This article belongs to the Special Issue Statistical Approaches in High Energy Physics)
Show Figures

Figure 1

25 pages, 627 KiB  
Article
Sensitivity of High-Scale SUSY in Low Energy Hadronic FCNC
by Morimitsu Tanimoto and Kei Yamamoto
Symmetry 2015, 7(2), 689-713; https://doi.org/10.3390/sym7020689 - 21 May 2015
Viewed by 5252
Abstract
We discuss the sensitivity of the high-scale supersymmetry (SUSY) at \(10\)–\(1000\) TeV in \(B^0\), \(B_s\), \(K^0\) and \(D\) meson systems together with the neutron electric dipole moment (EDM) and the mercury EDM. In order to estimate the contribution of the squark flavor mixing [...] Read more.
We discuss the sensitivity of the high-scale supersymmetry (SUSY) at \(10\)–\(1000\) TeV in \(B^0\), \(B_s\), \(K^0\) and \(D\) meson systems together with the neutron electric dipole moment (EDM) and the mercury EDM. In order to estimate the contribution of the squark flavor mixing to these flavor changing neutral currents (FCNCs), we calculate the squark mass spectrum, which is consistent with the recent Higgs discovery. The SUSY contribution in \(\epsilon_K\) could be large, around \(40\%\) in the region of the SUSY scale \(10\)–\(100\) TeV. The neutron EDM and the mercury EDM are also sensitive to the SUSY contribution induced by the gluino-squark interaction. The predicted EDMs are roughly proportional to \(|\epsilon_K^{\rm SUSY}|\). If the SUSY contribution is the level of \({\cal O}(10\%)\) for \(\epsilon_K\), the neutron EDM is expected to be discovered in the region of \(10^{-28}\)–\(10^{-26}\) ecm. The mercury EDM also gives a strong constraint for the gluino-squark interaction. The SUSY contribution of \(\Delta M_D\) is also discussed. Full article
(This article belongs to the Special Issue Supersymmetry 2014)
Show Figures

Back to TopTop