Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high-latitude mountain glaciers in China

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8730 KiB  
Article
Three-Dimensional Surface Motion Displacement Estimation of the Muz Taw Glacier, Sawir Mountains
by Yanqiang Wang, Jun Zhao, Zhongqin Li, Yanjie Yang and Jialiang Liu
Remote Sens. 2024, 16(22), 4326; https://doi.org/10.3390/rs16224326 - 20 Nov 2024
Viewed by 1044
Abstract
Research on glacier movement is helpful for comprehensively understanding the laws behind this movement and can also provide a scientific basis for glacier change and analyses of the dynamic mechanisms driving atmospheric circulation and glacier evolution. Sentinel-1 series data were used in this [...] Read more.
Research on glacier movement is helpful for comprehensively understanding the laws behind this movement and can also provide a scientific basis for glacier change and analyses of the dynamic mechanisms driving atmospheric circulation and glacier evolution. Sentinel-1 series data were used in this study to retrieve the three-dimensional (3D) surface motion displacement of the Muz Taw glacier from 22 August 2017, to 17 August 2018. The inversion method of the 3D surface motion displacement of glaciers has been verified by the field measurement data from Urumqi Glacier No. 1. The effects of topographic factors, glacier thickness, and climate factors on the 3D surface displacement of the Muz Taw glacier are discussed in this paper. The results show that, during the study period, the total 3D displacement of the Muz Taw glacier was between 0.52 and 13.19 m, the eastward displacement was 4.27 m, the northward displacement was 4.07 m, and the horizontal displacement was 5.90 m. Areas of high displacement were mainly distributed in the main glacier at altitudes of 3300–3350 and 3450–3600 m. There were significant differences in the total 3D displacement of the Muz Taw glacier in each season. The displacement was larger in summer, followed by spring, and it was similar in autumn and winter. The total 3D displacement during the whole study period and in spring, summer, and autumn fluctuated greatly along the glacier centerline, while the change in winter was relatively gentle. Various factors such as topography, glacier thickness, and climate had different influences on the surface motion displacement of the Muz Taw glacier. Full article
Show Figures

Figure 1

19 pages, 30402 KiB  
Article
Preliminary Investigation of the Remnants of Low-Latitude Glacial Activity on the Southeastern Margin of the Qinghai–Tibet Plateau
by Yiwen Pan, Shitao Zhang, Jianping Chen, Cheng Zhang and Shuangshuang Wu
Sustainability 2024, 16(8), 3492; https://doi.org/10.3390/su16083492 - 22 Apr 2024
Viewed by 1600
Abstract
The formation of Quaternary glaciers represented a pivotal event in the climatic and geological history of the Tibetan Plateau. However, due to the scarcity of direct evidence for low-latitude glaciation, the timing and extent of late Quaternary glaciation on the Tibetan Plateau remain [...] Read more.
The formation of Quaternary glaciers represented a pivotal event in the climatic and geological history of the Tibetan Plateau. However, due to the scarcity of direct evidence for low-latitude glaciation, the timing and extent of late Quaternary glaciation on the Tibetan Plateau remain controversial. This study focuses on the Liangwang Mountains, which are located in the southeastern part of the Tibetan Plateau and has a maximum elevation of 2820 m, as the subject of investigation. Through a comprehensive application of glacial landform analysis, scanning electron microscopy (SEM)-based micromorphology analysis of quartz sand, and spore-pollen data analysis, we uncovered evident signs of glacial activity in this region during the Quaternary period. Our research identified typical glacial landforms such as cirques, U-shaped valleys, fluted moraines, and terminal moraines. Additionally, spore-pollen analysis revealed a high frequency of fir pollen, indicating cold climatic conditions during that time. Furthermore, the micromorphology analysis of quartz sand further corroborated the glacial origin of these deposits. Based on these combined findings, our study confirms that the Liangwang Mountains experienced glaciation during the Quaternary period, making them glacial relics at the lowest latitude currently known in mainland China. This discovery provides a valuable reference for understanding the paleoclimate and glacial history of the Tibetan Plateau and its surrounding regions. Full article
(This article belongs to the Special Issue Geoheritage and Sustainable Development of Geotourism)
Show Figures

Figure 1

7 pages, 629 KiB  
Editorial
Sea, River, Lake Ice Properties and Their Applications in Practices
by Zhijun Li, Tomasz Kolerski, Li Zhou, Xiaohong Shi, Zhengyong Zhang and Fang Li
Water 2023, 15(5), 899; https://doi.org/10.3390/w15050899 - 26 Feb 2023
Cited by 2 | Viewed by 2410
Abstract
This Special Issue aims to highlight research articles focusing on the geographical scale of glacier and lake ice variations, as well as the engineering scale of ice properties and their practical applications via laboratory tests and numerical modeling. Additionally, it includes research on [...] Read more.
This Special Issue aims to highlight research articles focusing on the geographical scale of glacier and lake ice variations, as well as the engineering scale of ice properties and their practical applications via laboratory tests and numerical modeling. Additionally, it includes research on ecosystems under lake ice. The main goal is successfully achieved through the joint efforts of authors, anonymous reviewers, and editorial managers. In total, 1 review article and 15 research articles are included in this Special Issue. These articles cover a wide range of topics, including water resources from Chinese mountain glacier variation; lake ice phenology at different latitudes and altitudes around the world; ice properties from laboratory experiments and numerical modeling; ice engineering with different purposes in China and the Arctic; and ecosystem under lake ice at different temporal and spatial scales. This Special Issue received contributions from researchers from different parts of China and from Chinese international cooperation partners because of its focus on “higher temperature ice” under global warming. All papers presented are innovative and of high quality. This Special Issue can promote research on ice properties and their applications in practices ranging from mountains to sea, especially in popular water ecosystem environments under ice during seasonal ice period. Full article
(This article belongs to the Special Issue Sea, River, Lake Ice Properties and Their Applications in Practices)
Show Figures

Figure 1

21 pages, 6079 KiB  
Article
Retrieving and Verifying Three-Dimensional Surface Motion Displacement of Mountain Glacier from Sentinel-1 Imagery Using Optimized Method
by Yanqiang Wang, Jun Zhao, Zhongqin Li, Mingjun Zhang, Yuchun Wang, Jialiang Liu, Jianxia Yang and Zhihui Yang
Water 2021, 13(13), 1793; https://doi.org/10.3390/w13131793 - 29 Jun 2021
Cited by 6 | Viewed by 2155
Abstract
The time series study of glacier movement is of special importance for rational management of freshwater resources, studying glacier evolution, understanding mechanism of glacier movement, and assessing disasters caused by glacier movement. In this paper, we put forward an optimization scheme for the [...] Read more.
The time series study of glacier movement is of special importance for rational management of freshwater resources, studying glacier evolution, understanding mechanism of glacier movement, and assessing disasters caused by glacier movement. In this paper, we put forward an optimization scheme for the shortcomings in the calculation method of using remote sensing to invert the three-dimensional (3D) surface motion displacement of glacier. The optimized method consists of Offset Tracking method, Optimizing the offset tracking results by means of iterative filtering, OT-SBAS technology and Conversion of 3D surface motion displacement of glacier. The Urumqi Glacier No. 1 was selected to test the optimized method. The 3D surface motion displacement of Urumqi Glacier No. 1 was retrieved by using the optimized method based on the ascending and descending Sentinel-1 datasets from 19 April to 29 August 2018. The distribution of 3D surface velocity of the Urumqi Glacier No. 1 was obtained in time series, and the accuracy of the inversion results was evaluated by using the field measurement data. The results show that the accuracies of the inverted displacements of east branch of Urumqi Glacier No. 1 (UG1E) were about 0.062, 0.063, and 0.152 m in the east, north and vertical directions, and these values for the west branch (UG1W) were 0.015, 0.020 and 0.026 m, respectively. It is indicated that using Sentinel-1 ascending and descending data and using the optimized method to retrieve the 3D surface motion displacement of glacier should satisfy the requirements of inversing the 3D surface motion displacement of high-latitude mountain glaciers in China. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop