Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = heterografted copolymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3747 KiB  
Article
Alginate Heterografted Copolymer Thermo-Induced Hydrogel Reinforced by PAA-g-P(boc-L-Lysine): Effects on Hydrogel Thermoresponsiveness
by Aikaterini-Ariadni Moschidi and Constantinos Tsitsilianis
Polymers 2024, 16(24), 3555; https://doi.org/10.3390/polym16243555 - 20 Dec 2024
Viewed by 935
Abstract
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). [...] Read more.
In this article, we report on the alginate heterografted by Poly(N-isopropyl acrylamide-co-N-tert-butyl acrylamide) and Poly(N-isopropyl acrylamide) (ALG-g-P(NIPAM86-co-NtBAM14)-g-PNIPAM) copolymer thermoresponsive hydrogel, reinforced by substituting part of the 5 wt% aqueous formulation by small amounts of Poly(acrylic acid)-g-P(boc-L-Lysine) (PAA-g-P(b-LL)) graft copolymer (up to 1 wt%). The resulting complex hydrogels were explored by oscillatory and steady-state shear rheology. The thermoresponsive profile of the formulations were affected remarkably by increasing the PAA-g-P(b-LL) component of the polymer blend. Especially, the sol-gel behavior altered to soft gel–strong gel behavior due to the formation of a semi-interpenetrating network based on the hydrophobic self-organization of the PAA-g-P(b-LL). In addition, the critical characteristics, namely Tc,thermothickening (temperature above which the viscosity increases steeply) and ΔT (transition temperature window), shifted and broadened to lower temperatures, respectively, due to the influence of the hydrophobic side chains P(b-LL) on the LCST of the PNIPAM-based grafted chains of the alginate. The effect of ionic strength was also examined, showing that this is another important factor affecting the thermoresponsiveness of the hydrogel. Again, the thermoresponsive profile of the hydrogel was changed significantly by the presence of salt. All the formulations showed self-healing capability and tolerance injectability, suitable for potential bioapplications in living bodies. Full article
(This article belongs to the Special Issue Advanced Study on Polymer-Based Hydrogels)
Show Figures

Figure 1

16 pages, 3206 KiB  
Article
A Remarkable Impact of pH on the Thermo-Responsive Properties of Alginate-Based Composite Hydrogels Incorporating P2VP-PEO Micellar Nanoparticles
by Amalia Iliopoulou, Zacharoula Iatridi and Constantinos Tsitsilianis
Polymers 2024, 16(7), 886; https://doi.org/10.3390/polym16070886 - 24 Mar 2024
Cited by 2 | Viewed by 2769
Abstract
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various [...] Read more.
A heterograft copolymer with an alginate backbone, hetero-grafted by polymer pendant chains displaying different lower critical solution temperatures (LCSTs), combined with a pH-responsive poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) diblock copolymer forming micellar nanoparticles, was investigated in aqueous media at various pHs. Due to its thermo-responsive side chains, the copolymer forms hydrogels with a thermo-induced sol–gel transition, above a critical temperature, Tgel (thermo-thickening). However, by lowering the pH of the medium in an acidic regime, a remarkable increase in the elasticity of the formulation was observed. This effect was more pronounced in low temperatures (below Tgel), suggesting secondary physical crosslinking, which induces significant changes in the hydrogel thermo-responsiveness, transforming the sol–gel transition to soft gel–strong gel. Moreover, the onset of thermo-thickening shifted to lower temperatures followed by the broadening of the transition zone, implying intermolecular interactions between the uncharged alginate backbone with the PNIPAM side chains, likely through H-bonding. The shear-thinning behavior of the soft gel in low temperatures provides injectability, which allows potential applications for 3D printing. Furthermore, the heterograft copolymer/nanoparticles composite hydrogel, encapsulating a model hydrophobic drug in the hydrophobic cores of the nanoparticles, was evaluated as a pH-responsive drug delivery system. The presented tunable drug delivery system might be useful for biomedical potential applications. Full article
Show Figures

Figure 1

12 pages, 3007 KiB  
Article
Thermo-Responsive Injectable Hydrogels Formed by Self-Assembly of Alginate-Based Heterograft Copolymers
by Konstantinos Safakas, Sofia-Falia Saravanou, Zacharoula Iatridi and Constantinos Tsitsilianis
Gels 2023, 9(3), 236; https://doi.org/10.3390/gels9030236 - 17 Mar 2023
Cited by 15 | Viewed by 2680
Abstract
Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative [...] Read more.
Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications. Full article
(This article belongs to the Special Issue Structured Gels: Mechanics, Responsivity and Applications)
Show Figures

Graphical abstract

19 pages, 28137 KiB  
Article
Micellar Carriers of Active Substances Based on Amphiphilic PEG/PDMS Heterograft Copolymers: Synthesis and Biological Evaluation of Safe Use on Skin
by Justyna Odrobińska, Magdalena Skonieczna and Dorota Neugebauer
Int. J. Mol. Sci. 2021, 22(3), 1202; https://doi.org/10.3390/ijms22031202 - 26 Jan 2021
Cited by 3 | Viewed by 3481
Abstract
Amphiphilic copolymers containing polydimethylsiloxane (PDMS) and polyethylene glycol methyl ether (MPEG) were obtained via an azide-alkyne cycloaddition reaction between alkyne-functionalized copolymer of MPEG methacrylate and azide-functionalized PDMS. “Click” reactions were carried out with an efficiency of 33–47% increasing grafting degrees. The grafted copolymers [...] Read more.
Amphiphilic copolymers containing polydimethylsiloxane (PDMS) and polyethylene glycol methyl ether (MPEG) were obtained via an azide-alkyne cycloaddition reaction between alkyne-functionalized copolymer of MPEG methacrylate and azide-functionalized PDMS. “Click” reactions were carried out with an efficiency of 33–47% increasing grafting degrees. The grafted copolymers were able to carry out the micellization and encapsulation of active substances, such as vitamin C (VitC), ferulic acid (FA) and arginine (ARG) with drug loading content (DLC) in the range of 2–68% (VitC), and 51–89% (FA or ARG). In vitro release studies (phosphate buffer saline, PBS; pH = 7.4 or 5.5) demonstrated that the maximum release of active substances was mainly after 1–2 h. The permeability of released active substances through membrane mimicking skin evaluated by transdermal tests in Franz diffusion cells indicated slight diffusion into the solution (2–16%) and their remaining in the membrane. Studies on the selected carrier with FA showed no negative effect on cell viability, proliferation capacity or senescence, as well as cell apoptosis/necrosis differences or cell cycle interruption in comparison with control cells. These results indicated that the presented micellar systems are good candidates for carriers of cosmetic substances according to physicochemical characterization and biological studies. Full article
(This article belongs to the Special Issue Recent Advances in Biotechnology)
Show Figures

Figure 1

16 pages, 5226 KiB  
Article
PEG Graft Polymer Carriers of Antioxidants: In Vitro Evaluation for Transdermal Delivery
by Justyna Odrobińska, Magdalena Skonieczna and Dorota Neugebauer
Pharmaceutics 2020, 12(12), 1178; https://doi.org/10.3390/pharmaceutics12121178 - 3 Dec 2020
Cited by 10 | Viewed by 3302
Abstract
The in vitro biochemical evaluation of the applicability of polymers carrying active substances (micelles and conjugates) was carried out. Previously designed amphiphilic graft copolymers with retinol or 4-n-butylresorcinol functionalized polymethacrylate backbone and poly(ethylene glycol) (PEG) side chains that included Janus-type heterografted [...] Read more.
The in vitro biochemical evaluation of the applicability of polymers carrying active substances (micelles and conjugates) was carried out. Previously designed amphiphilic graft copolymers with retinol or 4-n-butylresorcinol functionalized polymethacrylate backbone and poly(ethylene glycol) (PEG) side chains that included Janus-type heterografted copolymers containing both PEG and poly(ε-caprolactone) (PCL) side chains were applied as micellar carriers. The polymer self-assemblies were convenient to encapsulate arbutin (ARB) as the selected active substances. Moreover, the conjugates of PEG graft copolymers with ferulic acid (FA) or lipoic acid (LA) were also investigated. The permeability of released active substances through a membrane mimicking skin was evaluated by conducting transdermal tests in Franz diffusion cells. The biological response to new carriers with active substances was tested across cell lines, including normal human dermal fibroblasts (NHDF), human epidermal keratinocyte (HaCaT), as well as cancer melanoma (Me45) and metastatic human melanoma (451-Lu), for comparison. These polymer systems were safe and non-cytotoxic at the tested concentrations for healthy skin cell lines according to the MTT test. Cytometric evaluation of cell cycles as well as cell death defined by Annexin-V apoptosis assays and senescence tests showed no significant changes under action of the delivery systems, as compared to the control cells. In vitro tests confirmed the biochemical potential of these antioxidant carriers as beneficial components in cosmetic products, especially applied in the form of masks and eye pads. Full article
(This article belongs to the Special Issue Sophisticated Nanostructures for Advanced Drug Delivery)
Show Figures

Figure 1

18 pages, 11787 KiB  
Article
Micellar Carriers Based on Amphiphilic PEG/PCL Graft Copolymers for Delivery of Active Substances
by Justyna Odrobińska and Dorota Neugebauer
Polymers 2020, 12(12), 2876; https://doi.org/10.3390/polym12122876 - 30 Nov 2020
Cited by 11 | Viewed by 4504
Abstract
Amphiphilic copolymers of alkyne functionalized 2-hydroxyethyl methacrylate (AlHEMA) and poly(ethylene glycol) methyl ether methacrylate (MPEGMA) with graft or V-shaped graft topologies were synthesized. The functionalization of poly(ε-caprolactone) (PCL) with azide group enabled attachment to P(AlHEMA-co-MPEGMA) copolymers via a “click” alkyne-azide reaction. [...] Read more.
Amphiphilic copolymers of alkyne functionalized 2-hydroxyethyl methacrylate (AlHEMA) and poly(ethylene glycol) methyl ether methacrylate (MPEGMA) with graft or V-shaped graft topologies were synthesized. The functionalization of poly(ε-caprolactone) (PCL) with azide group enabled attachment to P(AlHEMA-co-MPEGMA) copolymers via a “click” alkyne-azide reaction. The introduction of PCL as a second side chain type in addition to PEG resulted in heterografted copolymers with modified properties such as biodegradability. “Click” reactions were carried out with efficiencies between 17–70% or 32–50% (for lower molecular weight PCL, 4000 g/mol, or higher molecular weight PCL, 9000 g/mol, respectively) depending on the PEG grafting density. The graft copolymers were self-assembled into micellar superstructures with the ability to encapsulate active substances, such as vitamin C (VitC), arbutin (ARB) or 4-n-butylresorcinol (4nBRE). Drug loading contents (DLC) were obtained in the range of 5–55% (VitC), 39–91% (ARB) and 42–98% (4nBRE). In vitro studies carried out in a phosphate buffer saline (PBS) solution (at pH 7.4 or 5.5) gave the maximum release levels of active substances after 10–240 min depending on the polymer system. Permeation tests in Franz chambers indicated that the bioactive substances after release by micellar systems penetrated through the artificial skin membrane in small amounts, and a majority of the bioactive substances remained inside the membrane, which is satisfactory for most cosmetic applications. Full article
(This article belongs to the Collection Polymers for Controlled Drug Release)
Show Figures

Figure 1

Back to TopTop