Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = heterogeneous deformation-induced effect (HDI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5152 KiB  
Article
Heterogeneous Deformation-Induced Strengthening Achieves the Synergistic Enhancement of Strength and Ductility in Mg–Sc Alloys
by Wei Zhao, Mengyu Zhang, Ruxia Liu and Jian Zhang
Metals 2025, 15(4), 457; https://doi.org/10.3390/met15040457 - 18 Apr 2025
Viewed by 407
Abstract
Magnesium alloys are essential lightweight materials for engineering applications. However, conventional single-phase hexagonal close-packed (HCP) magnesium alloys exhibit poor cold workability and insufficient strength at room temperature, which limits their engineering applications. Compared to HCP structures with limited slip systems at room temperature, [...] Read more.
Magnesium alloys are essential lightweight materials for engineering applications. However, conventional single-phase hexagonal close-packed (HCP) magnesium alloys exhibit poor cold workability and insufficient strength at room temperature, which limits their engineering applications. Compared to HCP structures with limited slip systems at room temperature, body-centered cubic (BCC) structures possess 12 independent slip systems, enabling better plasticity. Therefore, Mg–Sc alloys with a dual-phase structure (HCP + BCC) exhibit superior plasticity compared to single-phase HCP magnesium alloys. In this study, the deformation behavior of dual-phase Mg-19.2 at.% Sc alloy was investigated, revealing its deformation characteristics and multiscale strengthening mechanisms. Experimental findings indicate that with the rise in annealing temperature, the volume fraction of the α phase progressively declines, while that of the β phase expands. Moreover, the grain size of the α phase first grows and then reduces, whereas the β phase grain size consistently enlarges. When the annealing temperature reaches 600 °C, the alloy exhibits an optimal strength–ductility combination, with an ultimate tensile strength of 329 MPa and an elongation of 20.5%. At this condition, the α phase volume fraction is 20%, while the β phase volume fraction is 80%, with corresponding grain sizes of 5.9 µm and 30.1 µm, respectively. Microstructural analysis indicates that the plastic incompatibility between the α and β phases induces significant heterogeneous deformation-induced (HDI) strengthening. Moreover, the unique bimodal grain size distribution, where the α phase grains are significantly smaller than the β phase grains, enhances the “hard phase harder, soft phase softer” heterogeneous structural effect, further amplifying the HDI strengthening contribution. This study provides new theoretical insights into multiphase interface engineering for designing high-performance dual-phase magnesium alloys. Full article
(This article belongs to the Special Issue Light Alloy and Its Application (2nd Edition))
Show Figures

Figure 1

24 pages, 6183 KiB  
Article
Micromechanics Modeling on Mechanical Properties in Mg Alloys with Bimodal Grain Size Distribution
by Shaojie Li, Jianfeng Jin, Hao Sun, Yongbo Wang, Yuping Ren, Mingtao Wang and Gaowu Qin
Nanomaterials 2024, 14(22), 1807; https://doi.org/10.3390/nano14221807 - 11 Nov 2024
Viewed by 1092
Abstract
Bimodal grain structure (BGS) Mg alloys containing a high fraction of fine grains (FGs) and a low fraction of coarse grains (CGs) show a good combination of strength and plasticity. Here, taking the ZK60 alloy as an example, the influences of CG size, [...] Read more.
Bimodal grain structure (BGS) Mg alloys containing a high fraction of fine grains (FGs) and a low fraction of coarse grains (CGs) show a good combination of strength and plasticity. Here, taking the ZK60 alloy as an example, the influences of CG size, volume fraction, and texture intensity on mechanical properties and the hetero-deformation-induced (HDI) effect were examined using the Mori–Tanaka mean-field method combined with strain gradient theory of plasticity. The results indicate that the overall mechanical properties decrease with an increase in CG size because the limited HDI effect cannot compensate for the strength and plasticity decrease derived from larger CGs. A higher aspect ratio of CG along the loading direction can weaken the HDI effect and subsequently reduce the overall mechanical properties. Optimal comprehensive mechanical properties can be achieved when the CG volume fraction is approximately 30%. Furthermore, an increasing basal texture intensity in CG results in higher yield strength and lower ultimate tensile strength, while the uniform elongation reaches a maximum value when ~60% of CGs possess hard orientations with Euler angles of (0~30°, 0°, 0°). Full article
Show Figures

Figure 1

10 pages, 5562 KiB  
Article
Trimodal Grain Structured Aluminum Matrix Composites Regulated by Transitional Hetero-Domains
by Zhiqi Guo, Xiaowen Fu, Sijie Wang, Zhanqiu Tan, Genlian Fan, Zhenming Yue and Zhiqiang Li
Metals 2024, 14(8), 891; https://doi.org/10.3390/met14080891 - 4 Aug 2024
Viewed by 1561
Abstract
Aluminum matrix composites (AMCs) with hetero-grains exhibit high strength with good ductility. A trimodal grain structure composed of ultrafine grains (UFGs), fine grains (FGs) and coarse grains (CGs) prevents the pre-mature cracking of hetero-zone boundaries in conventional bimodal grain structures; thus, it is [...] Read more.
Aluminum matrix composites (AMCs) with hetero-grains exhibit high strength with good ductility. A trimodal grain structure composed of ultrafine grains (UFGs), fine grains (FGs) and coarse grains (CGs) prevents the pre-mature cracking of hetero-zone boundaries in conventional bimodal grain structures; thus, it is favored by AMCs. However, the design of the size and distribution of hetero-domains in trimodal AMCs is tough, with complicated multi-scale deformation mechanisms. This study tunes the distribution of FG domains elaborately via altering the volume fraction of FG from 10 vol.% to 60 vol.% and investigates the distribution effect of FG domains on strength–ductility synergy. The optimized 2024 Al matrix composites with 30 vol.% FG exhibited a tensile strength of over 700 MPa and an elongation of 7.5%, respectively, realizing a good combination of high strength and ductility. This work enlightens the heterostructure design with a balance between heterogeneous deformation induced (HDI) strain hardening and high-content soft phase induced strain homogenization. Full article
Show Figures

Figure 1

12 pages, 3715 KiB  
Article
Gradient Microstructure Design in Stainless Steel: A Strategy for Uniting Strength-Ductility Synergy and Corrosion Resistance
by Qiong He, Wei Wei, Ming-Sai Wang, Feng-Jiao Guo, Yu Zhai, Yan-Fei Wang and Chong-Xiang Huang
Nanomaterials 2021, 11(9), 2356; https://doi.org/10.3390/nano11092356 - 10 Sep 2021
Cited by 16 | Viewed by 4010
Abstract
Martensite transformation and grain refinement can make austenitic stainless steel stronger, but this comes at a dramatic loss of both ductility and corrosion resistance. Here we report a novel gradient structure in 301 stainless steel sheets, which enables an unprecedented combination of high [...] Read more.
Martensite transformation and grain refinement can make austenitic stainless steel stronger, but this comes at a dramatic loss of both ductility and corrosion resistance. Here we report a novel gradient structure in 301 stainless steel sheets, which enables an unprecedented combination of high strength, improved ductility and good corrosion resistance. After producing inter-layer microstructure gradient by surface mechanical attrition treatment, the sheet was annealed at high temperature for a short duration, during which partial reverse transformation occurred to form recrystallized austenitic nano-grains in the surface layer, i.e., introducing extra intra-layer heterogeneity. Such 3D microstructure heterogeneity activates inter-layer and inter-phase interactions during deformation, thereby producing back stress for high yield strength and hetero-deformation induced (HDI) hardening for high ductility. Importantly, the recrystallized austenitic nano-grains significantly ameliorates the corrosion resistance. These findings suggest an effective route for evading the strength–ductility and strength–corrosion tradeoffs in stainless steels simultaneously. Full article
(This article belongs to the Special Issue Gradient Nanograined Materials)
Show Figures

Figure 1

11 pages, 3974 KiB  
Article
Microstructure and Mechanical Properties of Al-Mg-Si Similar Alloy Laminates Produced by Accumulative Roll Bonding
by Zhigang Li, Hao Jiang, Minghui Wang, Hongjie Jia, Hongjiang Han and Pinkui Ma
Materials 2021, 14(15), 4200; https://doi.org/10.3390/ma14154200 - 27 Jul 2021
Cited by 7 | Viewed by 2308
Abstract
As the applications of heterogeneous materials expand, aluminum laminates of similar materials have attracted much attention due to their greater bonding strength and easier recycling. In this work, an alloy design strategy was developed based on accumulative roll bonding (ARB) to produce laminates [...] Read more.
As the applications of heterogeneous materials expand, aluminum laminates of similar materials have attracted much attention due to their greater bonding strength and easier recycling. In this work, an alloy design strategy was developed based on accumulative roll bonding (ARB) to produce laminates from similar materials. Twin roll casting (TRC) sheets of the same composition but different cooling rates were used as the starting materials, and they were roll bonded up to three cycles at varying temperatures. EBSD showed that the two TRC sheets deformed in distinct ways during ARB processes at 300 °C. Major recrystallizations were significant after the first cycle on the thin sheet and after the third cycle on the thick sheet. The sheets were subject to subsequent aging for better mechanical properties. TEM observations showed that the size and distribution of nano-precipitations were different between the two sheet sides. These nano-precipitations were found to significantly promote precipitation strengthening, and such a promotive effect was referred to as hetero-deformation induced (HDI) strengthening. Our work provides a new promising method to prepare laminated heterogeneous materials with similar alloy TRC sheets. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems)
Show Figures

Figure 1

Back to TopTop