Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = heterocyclic push-pull dyes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2334 KB  
Article
Investigation of Structural and Optical Properties of Some [1,4]Dithiine-porphyrazine Dyes
by Ola A. Abu Ali, Hamada H. Abdel-Razik, Matokah Abualnaja and Eman Fayad
Molecules 2022, 27(5), 1651; https://doi.org/10.3390/molecules27051651 - 2 Mar 2022
Cited by 3 | Viewed by 2776
Abstract
1,4-Bis(p-tolylamino)-6,7-dichloroanthraquinone 1 when reacted with di(sodiothio)-maleonitrile 2 afforded heterocyclic thianone compound, 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-2,3-dicarbonitrile 3. Using lithium/pentanol and acetic acid, the dicarbonitrile product 3 was cyclotetramerized, yielding the matching tetra 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-porphyrazine dye compound (2H-Pz) 4a. The dicarbonitrile molecule was a ring-shaped metallic product utilizing [...] Read more.
1,4-Bis(p-tolylamino)-6,7-dichloroanthraquinone 1 when reacted with di(sodiothio)-maleonitrile 2 afforded heterocyclic thianone compound, 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-2,3-dicarbonitrile 3. Using lithium/pentanol and acetic acid, the dicarbonitrile product 3 was cyclotetramerized, yielding the matching tetra 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-porphyrazine dye compound (2H-Pz) 4a. The dicarbonitrile molecule was a ring-shaped metallic product utilizing metallic salt and quinoline, yielding the corresponding tetra 5,12-dioxo-5,12-dihydroanthro[2,3-b][1,4]dithiine-porphyrazinato-metal II dyes (M-Pz), M = Zn, Co, or Ni 4bd. The produced compounds’ elemental analysis investigation, Infrared, and nuclear magnetic resonance spectrum information accord with the structures attributed to them. The cyclotetramerization and complexation reactions are ensured by the molecular weight and metal load of the produced products. The inclusion of electron-donating groups resulted in a lower optical band gap of the produced dye sensitizers, with “push–pull” promotion of about 1.55 eV. The prepared substituted porphyrazines reveal high absorption in the UV–VIS region, which could be of potential value as a building block for novel electronic and optical materials as well as a sensor for technology. This is considered for improving solar cell absorption. The absorption bands of the synthesized porphyrazine dyes extend beyond 800 nm, so these dyes could be useful in various optoelectronic applications. Full article
(This article belongs to the Special Issue Pigment, Dye, and Green Colorant Research in Europe)
Show Figures

Figure 1

12 pages, 1380 KB  
Article
Push-Pull Heterocyclic Dyes Based on Pyrrole and Thiophene: Synthesis and Evaluation of Their Optical, Redox and Photovoltaic Properties
by Sara S. M. Fernandes, Maria Cidália R. Castro, Dzmitry Ivanou, Adélio Mendes and Maria Manuela M. Raposo
Coatings 2022, 12(1), 34; https://doi.org/10.3390/coatings12010034 - 28 Dec 2021
Cited by 19 | Viewed by 3149
Abstract
Three heterocyclic dyes were synthesized having in mind the changes in the photovoltaic, optical and redox properties by functionalization of 5-aryl-thieno[3,2-b]thiophene, 5-arylthiophene and bis-methylpyrrolylthiophene π-bridges with different donor, acceptor/anchoring groups. Knoevenagel condensation of the aldehyde precursors with 2-cyanoacetic acid was [...] Read more.
Three heterocyclic dyes were synthesized having in mind the changes in the photovoltaic, optical and redox properties by functionalization of 5-aryl-thieno[3,2-b]thiophene, 5-arylthiophene and bis-methylpyrrolylthiophene π-bridges with different donor, acceptor/anchoring groups. Knoevenagel condensation of the aldehyde precursors with 2-cyanoacetic acid was used to prepare the donor-acceptor functionalized heterocyclic molecules. These organic metal-free dyes are constituted by thieno[3,2-b]thiophene, arylthiophene, bis-methylpyrrolylthiophene, spacers and one or two cyanoacetic acid acceptor groups and different electron donor groups (alkoxyl, and pyrrole electron-rich heterocycle). The evaluation of the redox, optical and photovoltaic properties of these compounds indicate that 5-aryl-thieno[3,2-b]thiophene-based dye functionalized with an ethoxyl electron donor and a cyanoacetic acid electron acceptor group/anchoring moiety displays as sensitizer for DSSCs the best conversion efficiency (2.21%). It is mainly assigned to the higher molar extinction coefficient, long π-conjugation of the heterocyclic system, higher oxidation potential and strong electron donating capacity of the ethoxyl group compared to the pirrolyl moiety. Full article
(This article belongs to the Special Issue Syntheses, Properties, and Applications of Organic Dyes and Pigments)
Show Figures

Figure 1

15 pages, 3146 KB  
Article
Simple Development of Novel Reversible Colorimetric Thermometer Using Urea Organogel Embedded with Thermochromic Hydrazone Chromophore
by Tawfik A. Khattab, Mehrez E. El-Naggar, Meram S. Abdelrahman, Ali Aldalbahi and Mohammad Rafe Hatshan
Chemosensors 2020, 8(4), 132; https://doi.org/10.3390/chemosensors8040132 - 15 Dec 2020
Cited by 27 | Viewed by 3695
Abstract
Thermochromic urea (U) organogel immobilized with a thermochromic tricyanofuran hydrazone (TCFH) chromophore was developed. Thermochromic TCFH chromophore bearing two nitro functional groups on a hydrazone recognition unit was synthesized via an azo-coupling reaction of tricyanofuran (TCF) heterocyclic moiety containing an active methyl group [...] Read more.
Thermochromic urea (U) organogel immobilized with a thermochromic tricyanofuran hydrazone (TCFH) chromophore was developed. Thermochromic TCFH chromophore bearing two nitro functional groups on a hydrazone recognition unit was synthesized via an azo-coupling reaction of tricyanofuran (TCF) heterocyclic moiety containing an active methyl group with the diazonium chloride salt of 2,4-dinitroaniline comprising two strongly electron-withdrawing nitro groups. The molecular structure of both intermediates and TCFH dye were characterized by several analytical methods, including 1H NMR, 13C NMR, IR, mass spectroscopy (MS), and elemental analysis. The thermochromic responsiveness could be attributed to the charge delocalization of TCFH as well as to the presence of an intramolecular charge transfer. The generated organogel displayed a thermoreversible sol–gel transition associated with color change. The origin of the monitored thermochromism is a conformational change of the tricyanofuran hydrazone backbone due to the temperature-driven deprotonation–protonation reversible process. The prepared urea–tricyanofuran hydrazone (UTCFH) thermometer acted as a diagnostic tool providing an instant color change between yellow, orange, red and purple upon changing the temperature of the UTCFH organogel in dimethyl sulfoxide (DMSO). This color change was proportionally correlated with increasing the temperature from 44 to 63 °C. The UTCFH organogel composed of urea and push-π-pull hydrazone type tricyanofuran chromophore immobilized physically in the urea organogel was found to function as a temperature-driven chromic thermometer. This chromogenic UTCFH organogel in DMSO displayed a phase transition at 41–48 °C. The morphological properties of the gel internal fibrous nanostructure (80–120 nm) were monitored by scanning electron microscopy (SEM). The colorimetric measurements were monitored by UV–Vis absorption spectroscopy. The chromogenic thermometer demonstrated a good reversibility without fatigue. The mechanism accounting for thermochromism of UTCFH organogel is proposed. Full article
Show Figures

Figure 1

16 pages, 1573 KB  
Article
Synthesis of Naphthalene-Based Push-Pull Molecules with a Heteroaromatic Electron Acceptor
by David Šarlah, Amadej Juranovič, Boris Kožar, Luka Rejc, Amalija Golobič and Andrej Petrič
Molecules 2016, 21(3), 267; https://doi.org/10.3390/molecules21030267 - 2 Mar 2016
Cited by 10 | Viewed by 10820
Abstract
Naphthalene derivatives bearing electron-accepting and electron-donating groups at the 2,6-positions belong to the family of D-π-A push-pull dyes. It has been found that these compounds, e.g., 2-(1-(6-((2-(fluoro)ethyl)(methyl)amino)naphthalen-2-yl)ethylidene)malononitrile (FDDNP), show not only interesting optical properties, such as solvatochromism, but they have the potential to [...] Read more.
Naphthalene derivatives bearing electron-accepting and electron-donating groups at the 2,6-positions belong to the family of D-π-A push-pull dyes. It has been found that these compounds, e.g., 2-(1-(6-((2-(fluoro)ethyl)(methyl)amino)naphthalen-2-yl)ethylidene)malononitrile (FDDNP), show not only interesting optical properties, such as solvatochromism, but they have the potential to label protein aggregates of different compositions formed in the brain of patients suffering from neurodegenerative diseases like Alzheimer’s (AD). In continuation of our research we set our goal to find new FDDNP analogs, which would inherit optical and binding properties but hopefully show better specificity for tau protein aggregates, which are characteristic for neurodegeneration caused by repetitive mild trauma. In this work we report on the synthesis of new FDDNP analogs in which the acceptor group has been formally replaced with an aromatic five- or six-membered heterocycle. The heterocyclic moiety was annealed to the central naphthalene ring either by classical ring closure reactions or by modern transition metal-catalyzed coupling reactions. The chemical characterization, NMR spectra, and UV/vis properties of all new compounds are reported. Full article
(This article belongs to the Collection Heterocyclic Compounds)
Show Figures

Figure 1

Back to TopTop