Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = heavy-concrete steel plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10812 KiB  
Article
Analysis and Application of Double Steel Plate Concrete Composite Shear Wall in the R&D Building of Zhanjiang Bay Laboratory
by Tao Lan, Xiaopeng Wang, Yuansheng Cui, Xin Liu and Yong You
Buildings 2023, 13(12), 3055; https://doi.org/10.3390/buildings13123055 - 8 Dec 2023
Cited by 3 | Viewed by 1961
Abstract
The R&D Building of Zhanjiang Bay Laboratory is a high-rise structure with multiple irregular items exceeding the specification limit, employing a steel frame-shear wall structural system. The outer frame consists of square steel tube concrete columns and solid-web steel beams, while the core [...] Read more.
The R&D Building of Zhanjiang Bay Laboratory is a high-rise structure with multiple irregular items exceeding the specification limit, employing a steel frame-shear wall structural system. The outer frame consists of square steel tube concrete columns and solid-web steel beams, while the core shear wall uses a double steel plate concrete composite shear wall. This paper employs the architectural structural calculation software YJK-EP to perform a dynamic elastic-plastic time-history analysis under rare earthquake action. The shear and bending resistance of the shear wall at the maximum shear force and bending moment are checked to meet the requirements of the “Technical Specifications for Concrete Structures of High-rise Buildings”. The maximum inter-story displacement angle meets the requirements of the “Code for Seismic Design of Buildings”. The double steel plate concrete composite shear wall Wall-1, connected to a large-span and heavy-load transfer truss, was verified under significant seismic action using the ABAQUS software. The results indicate that Wall-1 can meet the design target requirements under major earthquake conditions. Finally, a dynamic nonlinear analysis method was employed using MIDAS-GEN software to study the structure’s anti-progressive collapse performance. The results show that under seven different scenarios, the maximum rotational angle of the remaining structural horizontal members is 2.02°, far less than the limit set by GSA, indicating that a progressive collapse did not occur. In the scenario where the corner column is removed, both the maximum shear and bending moment values for Wall-1 are far below its shear and bending resistance capacities, satisfying the load-bearing requirements. The removal of the corner column has a significant impact on the displacement of the columns on the same level nearby, with the peak displacement change rate reaching 702.65%. Full article
(This article belongs to the Special Issue Advancements in Large-Span Steel Structures and Architectural Design)
Show Figures

Figure 1

23 pages, 12762 KiB  
Article
Preliminary Investigation on Steel Jacketing Retrofitting of Concrete Bridges Half-Joints
by Gabriele Bertagnoli, Mario Ferrara, Luca Giordano and Marzia Malavisi
Appl. Sci. 2023, 13(14), 8181; https://doi.org/10.3390/app13148181 - 13 Jul 2023
Cited by 5 | Viewed by 3423
Abstract
An innovative strengthening system for dapped-end beams is studied numerically and experimentally in this paper. The system is developed for the half-joint regions of bridge beams also commonly called “gerber saddles”, but it can be adapted to different scenarios. The strengthening system consists [...] Read more.
An innovative strengthening system for dapped-end beams is studied numerically and experimentally in this paper. The system is developed for the half-joint regions of bridge beams also commonly called “gerber saddles”, but it can be adapted to different scenarios. The strengthening system consists of two steel plates that are clamped on both sides of the webs of the beams by means of bolts. The purpose of the system is to transfer the highest possible amount of shear from the concrete webs to the steel plate elements reducing the resistance demand of the concrete half joint. Shear is transferred by friction from concrete to steel plates. The system is designed to be applied on existing bridges without heavy work interesting the carriageway, therefore reducing the interference with the traffic. Some interesting considerations emerge from the study, including the influence of the flange web connection on the structural behavior and the possible presence of brittle failure mechanisms that are difficult to model numerically using f.e.m. simulations. Full article
(This article belongs to the Special Issue Existing Bridges: From Inspection to Structural Rehabilitation)
Show Figures

Figure 1

24 pages, 8674 KiB  
Article
Composite Cold-Formed Steel Beams with Diagonal Rebars for Earthquake-Resistant Buildings
by James Samuel, Shalini Ramachandran Nair, Philip Saratha Joanna, Beulah Gnana Ananthi Gurupatham, Krishanu Roy and James Boon Piang Lim
Materials 2023, 16(8), 3002; https://doi.org/10.3390/ma16083002 - 10 Apr 2023
Cited by 13 | Viewed by 2404
Abstract
The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can [...] Read more.
The construction industry is on the lookout for cost-effective structural members that are also environmentally friendly. Built-up cold-formed steel (CFS) sections with minimal thickness can be used to make beams at a lower cost. Plate buckling in CFS beams with thin webs can be avoided by using thick webs, adding stiffeners, or strengthening the web with diagonal rebars. When CFS beams are designed to carry heavy loads, their depth logically increases, resulting in an increase in building floor height. The experimental and numerical investigation of CFS composite beams reinforced with diagonal web rebars is presented in this paper. A total of twelve built-up CFS beams were used for testing, with the first six designed without web encasement and the remaining six designed with web encasement. The first six were constructed with diagonal rebars in the shear and flexure zones, while the other two with diagonal rebars in the shear zone, and the last two without diagonal rebars. The next set of six beams was constructed in the same manner, but with a concrete encasement of the web, and all the beams were then tested. Fly ash, a pozzolanic waste byproduct of thermal power plants, was used as a 40% replacement for cement in making the test specimens. CFS beam failure characteristics, load–deflection behavior, ductility, load–strain relationship, moment–curvature relationship, and lateral stiffness were all investigated. The results of the experimental tests and the nonlinear finite element analysis performed in ANSYS software were found to be in good agreement. It was discovered that CFS beams with fly ash concrete encased webs have twice the moment resisting capacity of plain CFS beams, resulting in a reduction in building floor height. The results also confirmed that the composite CFS beams have high ductility, making them a reliable choice for earthquake-resistant structures. Full article
Show Figures

Figure 1

12 pages, 3417 KiB  
Article
Temperature Field and Stress Analysis of the Heavy-Concrete Transfer–Purge Chamber of the Nuclear Power Plant
by Xiaohui Wang, Xiaojun Li, Xuchen Liu, Yushi Wang, Aiwen Liu, Qiumei He and Chunlin Hou
Materials 2023, 16(2), 613; https://doi.org/10.3390/ma16020613 - 9 Jan 2023
Viewed by 2868
Abstract
A transfer–purge chamber (TPC) is a double-steel-plate, heavy-concrete, curved-surface composite structure composed of steel plates, heavy concrete, and shear connectors. It is an important facility in the external refueling system of a nuclear power plant (NPP), providing a safe and reliable biological shielding [...] Read more.
A transfer–purge chamber (TPC) is a double-steel-plate, heavy-concrete, curved-surface composite structure composed of steel plates, heavy concrete, and shear connectors. It is an important facility in the external refueling system of a nuclear power plant (NPP), providing a safe and reliable biological shielding space for reactor refueling operations. Temperature load is one of the most important factors that must be considered in the design of NPP structures. The temperature loads experienced by the TPC during its life cycle include those encountered in both normal and abnormal operation, which are distinct. In this study, we investigated the steady state and transient-state temperature fields and stresses of a TPC structure under normal operation and after 48 h of abnormal operation, respectively, which were calculated using Abaqus finite element software and the directly coupled method. During normal operation, the temperature field of the structure shows relatively uniform changes, and the temperature gradient of the internal concrete in the direction of its thickness has a constant value of 0.245 °C/cm. At the junction between the transfer and purge sub-chambers of the TPC, under the influence of wall curvature and deformation constraints, the maximum tensile strain of heavy concrete is 8.84 × 10−3, the maximum compressive strain is 2.04 × 10−3, the peak stress of the steel plate is 98.305 MPa, and the peak stress of the stud is 306.725 MPa. After 48 h of abnormal operation, the temperatures of the inner surface of the heavy concrete of the wall, the inner steel plate of the wall, the outer surface of the heavy concrete of the wall, and the inner steel plate of the wall increased by 8.12, 8.11, 0.31, and 0.30 °C, respectively. The tensile strain of the heavy concrete of the wall increased significantly by 52.64%, and the compressive strain of the concrete increased by 67.33%, whereas the stresses of the studs and steel plates increased by only 1.57% and 6.79%, respectively. These results show that the change in the temperature field greatly influences the stress and strain on the TPC structure. As measures for mitigating the development of this unfavorable situation of temperature stress concentration, the temperature operating range should be rationally controlled or the junction structure between the transfer and purge sub-chambers of the TPC optimized accordingly. The results of our study can provide basic data for a dynamic analysis of the TPC under conditions of combined earthquake and temperature loads. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 13910 KiB  
Article
Modelling of Cyclic Load Behaviour of Smart Composite Steel-Concrete Shear Wall Using Finite Element Analysis
by Hadee Mohammed Najm, Amer M. Ibrahim, Mohanad Muayad Sabri, Amer Hassan, Samadhan Morkhade, Nuha S. Mashaan, Moutaz Mustafa A. Eldirderi and Khaled Mohamed Khedher
Buildings 2022, 12(6), 850; https://doi.org/10.3390/buildings12060850 - 17 Jun 2022
Cited by 13 | Viewed by 3195
Abstract
In recent years, steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to their high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in auxiliary buildings, surrounding the reactor containment [...] Read more.
In recent years, steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to their high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in auxiliary buildings, surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. The current study aims to investigate the seismic behaviour of composite shear walls and evaluate their performance in comparison with traditional reinforced concrete (RC) walls when subjected to cyclic loading. A three-dimensional finite element model is developed using ANSYS by emphasising constitutive material modelling and element type to represent the real physical behaviour of complex shear wall structures. The analysis escalates with parametric variation in reinforcement ratio, compressive strength of the concrete wall, layout of shear stud and yield stress of infill steel plate. The modelling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. The findings of this study showed that an up to 3.5% increase in the reinforcement ratio enhanced the ductility and energy absorption with a ratio of 37% and 38%, respectively. Moreover, increasing the concrete strength up to 55 MPa enhanced the ductility and energy absorption with ratios of 51% and 38%, respectively. Thus, this improves the contribution of concrete strength, while increasing the yield stress of steel plate (to 380 MPa) enhanced the ductility (by a ratio of 66%) compared with the reference model. The present numerical research shows that the compressive strength of the concrete wall, reinforcement ratio, layout of shear stud and yield stress of infill steel plate significantly affect ductility and energy absorption. Moreover, this offers a possibility for improving the shear wall’s capacity, which is more important. Full article
Show Figures

Figure 1

27 pages, 11099 KiB  
Article
Research on Fatigue Damage Evolution of the Base Plate Structure of China Railway Track System III Type Slab Ballastless Track under Heavy Haul Train Load
by Zhiping Zeng, Ji Hu, Xudong Huang, Weidong Wang, Zhibin Huang, Abdulmumin Ahmed Shuaibu, Yu Yuan, Zhonglin Xie and Xianfeng He
Appl. Sci. 2022, 12(3), 1694; https://doi.org/10.3390/app12031694 - 7 Feb 2022
Cited by 7 | Viewed by 3253
Abstract
To meet the transportation requirements of heavy-haul trains, it is necessary to consider the use of prestressed reinforced concrete ballastless tracks. Therefore, the CRTSIII SBT (China Railway Track System III-type slab ballastless track) has been considered for its convenient construction and geometric adjustment. [...] Read more.
To meet the transportation requirements of heavy-haul trains, it is necessary to consider the use of prestressed reinforced concrete ballastless tracks. Therefore, the CRTSIII SBT (China Railway Track System III-type slab ballastless track) has been considered for its convenient construction and geometric adjustment. Considering the problems existing in the base plate of CRTSIII SBT in heavy-haul applications, an indoor test and simulation were conducted to explore the cracking phenomenon of the base plate concrete under fatigue load. The reliability of the simulation was verified through the experimental results. A fatigue crack development law of the base plate structure was established. Furthermore, the influence of the load position, the thickness of self-compacting concrete and axle loads on the fatigue damage of the base plate structure were investigated. For the CRTSIII SBT subjected to heavier axle loads, it is appropriate to thicken the self-compacting concrete layer and strengthen the concrete and steel reinforcement at the plate end to reduce fatigue damage and cracks. The research results can serve as a basis for the optimization of the CRTSIII SBT base plate structure in heavy-haul railway applications. Full article
Show Figures

Figure 1

18 pages, 8197 KiB  
Article
Shaking Table Test of a Transfer-Purge Chamber in Nuclear Island Structure
by Xuchen Liu, Xiaojun Li, Xiaohui Wang, Ning Wang and Zaixian Li
Materials 2022, 15(3), 766; https://doi.org/10.3390/ma15030766 - 20 Jan 2022
Cited by 3 | Viewed by 1946
Abstract
The transfer-purge chamber is an operation room for nuclear fuel transport and purging in a nuclear power plant, which has a demand for structural reliability and radiation protection. The transfer-purge chamber has features such as large curvature, heavy concrete, long overhang, and irregular [...] Read more.
The transfer-purge chamber is an operation room for nuclear fuel transport and purging in a nuclear power plant, which has a demand for structural reliability and radiation protection. The transfer-purge chamber has features such as large curvature, heavy concrete, long overhang, and irregular cross-sections, and it is constructed of double steel plates reinforced concrete (SC) structure. This study performed shaking table tests for a 1:4.5 scale model of the transfer-purge chamber. Three sets of ground motions were input in the scale model in the horizontal and vertical directions to study its structural reliability and seismic performance. Acceleration response and strain response of the structure were analyzed to evaluate the dynamic characteristics of the transfer-purge chamber under the ground motion. The results show that the transfer-purge chamber has great stiffness and short periods. The periods slightly increase with the rise of intensity of seismic ground motions. Under the excitation of ground motions, the dynamic response of the transfer-purge chamber is slight. No obvious deformation or damage occurred on the transfer-purge chamber, and cracking in concrete or buckling on steel plate did not appear. The transfer-purge chamber has excellent seismic performance, and it is sufficiently safe and reliable from a structural perspective. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop