Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = heat shock protein 70 eyes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2091 KiB  
Article
From Nature to Treatment: The Impact of Pterostilbene on Mitigating Retinal Ischemia–Reperfusion Damage by Reducing Oxidative Stress, Inflammation, and Apoptosis
by Beáta Pelles-Taskó, Réka Szekeres, Barbara Takács, Anna Szilágyi, Dóra Ujvárosy, Mariann Bombicz, Dániel Priksz, Balázs Varga, Rudolf Gesztelyi, Zoltán Szabó, Zoltán Szilvássy and Béla Juhász
Life 2024, 14(9), 1148; https://doi.org/10.3390/life14091148 - 11 Sep 2024
Cited by 1 | Viewed by 1517
Abstract
Retinal ischemia–reperfusion (I/R) injury is a critical pathogenic mechanism in various eye diseases, and an effective therapeutic strategy remains unresolved. Natural derivatives have recently reemerged; therefore, in our present study, we examined the potential therapeutic effects of a stilbenoid that is chemically related [...] Read more.
Retinal ischemia–reperfusion (I/R) injury is a critical pathogenic mechanism in various eye diseases, and an effective therapeutic strategy remains unresolved. Natural derivatives have recently reemerged; therefore, in our present study, we examined the potential therapeutic effects of a stilbenoid that is chemically related to resveratrol. Pterostilbene, recognized for its anti-inflammatory, anti-carcinogenic, anti-diabetic, and neuroprotective properties, counteracts oxidative stress during I/R injury through various mechanisms. This study explored pterostilbene as a retinoprotective agent. Male Sprague Dawley rats underwent retinal I/R injury and one-week reperfusion and were treated with either vehicle or pterostilbene. After this functional electroretinographical (ERG) measurement, Western blot and histological analyses were performed. Pterostilbene treatment significantly improved retinal function, as evidenced by increased b-wave amplitude on ERG. Histological studies showed reduced retinal thinning and preserved the retinal structure in the pterostilbene-treated groups. Moreover, Western blot analysis revealed a decreased expression of glial fibrillary acidic protein (GFAP) and heat shock protein 70 (HSP70), indicating reduced glial activation and cellular stress. Additionally, the expression of pro-apoptotic and inflammatory markers, poly(ADP-ribose) polymerase 1 (PARP1) and nuclear factor kappa B (NFκB) was significantly reduced in the pterostilbene-treated group. These findings suggest that pterostilbene offers protective effects on the retina by diminishing oxidative stress, inflammation, and apoptosis, thus preserving retinal function and structure following I/R injury. This study underscores pterostilbene’s potential as a neuroprotective therapeutic agent for treating retinal ischemic injury and related disorders. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

16 pages, 834 KiB  
Review
The Role of Heat Shock Protein 70 (HSP70) in the Pathogenesis of Ocular Diseases—Current Literature Review
by Monika Modrzejewska and Oliwia Zdanowska
J. Clin. Med. 2024, 13(13), 3851; https://doi.org/10.3390/jcm13133851 - 30 Jun 2024
Cited by 2 | Viewed by 2471
Abstract
Heat shock proteins (HSPs) have been attracting the attention of researchers for many years. HSPs are a family of ubiquitous, well-characterised proteins that are generally regarded as protective multifunctional molecules that are expressed in response to different types of cell stress. Their activity [...] Read more.
Heat shock proteins (HSPs) have been attracting the attention of researchers for many years. HSPs are a family of ubiquitous, well-characterised proteins that are generally regarded as protective multifunctional molecules that are expressed in response to different types of cell stress. Their activity in many organs has been reported, including the heart, brain, and retina. By acting as chaperone proteins, HSPs help to refold denatured proteins. Moreover, HSPs elicit inhibitory activity in apoptotic pathways and inflammation. Heat shock proteins were originally classified into several subfamilies, including the HSP70 family. The aim of this paper is to systematise information from the available literature about the presence of HSP70 in the human eye and its role in the pathogenesis of ocular diseases. HSP70 has been identified in the cornea, lens, and retina of a normal eye. The increased expression and synthesis of HSP70 induced by cell stress has also been demonstrated in eyes with pathologies such as glaucoma, eye cancers, cataracts, scarring of the cornea, ocular toxpoplasmosis, PEX, AMD, RPE, and diabetic retinopathy. Most of the studies cited in this paper confirm the protective role of HSP70. However, little is known about these molecules in the human eye and their role in the pathogenesis of eye diseases. Therefore, understanding the role of HSP70 in the pathophysiology of injuries to the cornea, lens, and retina is essential for the development of new therapies aimed at limiting and/or reversing the processes that cause damage to the eye. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

17 pages, 2260 KiB  
Article
Influence of Heat Stress on Body Surface Temperature and Blood Metabolic, Endocrine, and Inflammatory Parameters and Their Correlation in Cows
by Bojan Blond, Mira Majkić, Jovan Spasojević, Slavča Hristov, Miodrag Radinović, Sandra Nikolić, Ljiljana Anđušić, Aleksandar Čukić, Maja Došenović Marinković, Biljana Delić Vujanović, Nemanja Obradović and Marko Cincović
Metabolites 2024, 14(2), 104; https://doi.org/10.3390/metabo14020104 - 2 Feb 2024
Cited by 9 | Viewed by 3882
Abstract
This study aimed to determine whether heat stress affected the values and correlations of metabolic, endocrinological, and inflammatory parameters as well as the rectal and body surface temperature of cows in the early and middle stages of lactation. This experiment was conducted in [...] Read more.
This study aimed to determine whether heat stress affected the values and correlations of metabolic, endocrinological, and inflammatory parameters as well as the rectal and body surface temperature of cows in the early and middle stages of lactation. This experiment was conducted in May (thermoneutral period), June (mild heat stress), and July (moderate to severe heat stress). In each period we included 15 cows in early lactation and 15 in mid-lactation. The increase in rectal and body surface temperatures (°C) in moderate to severe heat stress compared to the thermoneutral period in different regions was significant (p < 0.01) and the results are presented as mean and [95%CI]: rectal + 0.9 [0.81–1.02], eye + 6 [5.74–6.25], ear + 13 [11.9–14.0], nose + 3.5 [3.22–3.71], forehead + 6.6 [6.43–6.75], whole head + 7.5 [7.36–7.68], abdomen + 8.5 [8.25–8.77], udder + 7.5 [7.38–7.65], front limb + 6 [5.89–6.12], hind limb + 3.6 [3.46–3.72], and whole body + 9 [8.80–9.21]. During heat stress (in both mild and moderate to severe stress compared to a thermoneutral period), an increase in the values of extracellular heat shock protein 70 (eHsp70), tumor necrosis factor α (TNFα), cortisol (CORT), insulin (INS), revised quantitative insulin sensitivity check index (RQUICKI), urea, creatinine, total bilirubin, aspartate transpaminase (AST), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and creatin kinase (CK) occurred, as well as a decrease in the values of triiodothyronine (T3), thyroxine (T4), non-esterified fatty acids (NEFA), glucose (GLU), β-Hydroxybutyrate (BHB), calcium, phosphorus, total protein (TPROT), albumin (ALB), triglycerides (TGCs), and cholesterol (CHOL). In cows in early lactation compared to cows in mid-lactation, there was a significantly larger increase (p < 0.01) in the values of eHsp70, TNFα, GLU, RQUICKI, and GGT, while the INS increase was smaller during the three experimental periods. The decrease in the values of Ca, CHOL, and TGC was more pronounced in cows in early lactation compared to cows in mid-lactation during the three experimental periods. Rectal temperature was related to eHsp70 (r = 0.38, p < 0.001) and TNFα (r = 0.36, p < 0.01) and showed non-significant poor correlations with other blood parameters. Blood parameters correlate with body surface temperature, with the following most common results: eHsp70 and TNFα showed a moderately to strongly significant positive correlation (r = 0.79–0.96, p < 0.001); CORT, INS, and Creat showed fairly to moderately significant positive correlations; T3, T4, NEFA and GLU showed fairly to moderately significant negative correlations (r = 0.3–0.79; p < 0.01); RQUICKI, urea, AST, and GGT showed fairly and significantly positive correlations; and TGC, CHOL, TPROT, and ALB showed fairly and significantly negative correlations (r = 0.3–0.59; p < 0.01). Measuring the surface temperature of the whole body or head can be a useful tool in evaluating the metabolic response of cows because it has demonstrated an association with inflammation (TNFα, eHsp70), endocrine response (CORT, T3, T4), the increased use of glucose and decreased use of lipids for energy purposes (INS, NEFA, GLU, and RQUICKI), and protein catabolism (ALB, TPROT, urea, Creat), which underlies thermolysis and thermogenesis in cows under heat stress. In future research, it is necessary to examine the causality between body surface area and metabolic parameters. Full article
Show Figures

Figure 1

12 pages, 2618 KiB  
Article
Preventative Effects of Cordyceps cicadae Mycelial Extracts on the Early-Stage Development of Cataracts in UVB-Induced Mice Cataract Model
by Tsung-Han Lu, Jun-Way Chang, Bo-Yi Jhou, Jui-Hsia Hsu, Tsung-Ju Li, Li-Ya Lee, Yen-Lien Chen, Han-Hsin Chang, Chin-Chu Chen, Pey-Shiuan Wu and David Pei-Cheng Lin
Nutrients 2023, 15(14), 3103; https://doi.org/10.3390/nu15143103 - 11 Jul 2023
Cited by 5 | Viewed by 3111
Abstract
Cataracts, a prevalent age-related eye condition, pose a significant global health concern, with rising rates due to an aging population and increased digital device usage. In Taiwan, cataract prevalence is particularly high, reaching up to 90% among individuals aged 70 and above. The [...] Read more.
Cataracts, a prevalent age-related eye condition, pose a significant global health concern, with rising rates due to an aging population and increased digital device usage. In Taiwan, cataract prevalence is particularly high, reaching up to 90% among individuals aged 70 and above. The lens of the eye absorbs short-wave light, which can lead to oxidative stress in lens epithelial cells and contribute to cataract formation. Exposure to ultraviolet (UV) light further exacerbates the risk of cataracts by generating reactive oxygen species. Heat-shock proteins (HSPs), involved in protein maintenance and repair, have been linked to cataract development. Cordyceps cicadae (C. cicadae), a traditional Chinese medicine, has a long history of use and is known for its pharmacological effects. N6-(2-hydroxyethyl) adenosine (HEA), a bioactive compound found in C. cicadae, exhibits anti-inflammatory, immunomodulatory, and neuroprotective properties. Previous studies have shown that C. cicadae mycelial extracts improve dry eye disease and reduce intraocular pressure in animal models. Additionally, C. cicadae possesses antioxidant properties, which are beneficial for combating cataract formation. In this study, we aim to evaluate the preventive efficacy of C. cicadae mycelial extracts in UV-induced cataract development. By investigating the ameliorative effects of C. cicadae on eye diseases and its potential role in ocular health improvement, we hope to uncover new options for cataract prevention and provide insights into the mechanisms of action. The findings of this research could provide a novel approach for nutritional supplements targeting cataract prevention, offering potential benefits in the field of ocular health. Full article
(This article belongs to the Special Issue The Role of Nutrition in Eye Health)
Show Figures

Figure 1

Back to TopTop