Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = hard-carbon microspheres

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 22223 KiB  
Article
Enhanced Fenton-like Catalytic Activation of Peroxymonosulfate over Macroporous LaFeO3 for Water Remediation
by Elzhana Encheva, Savina Koleva, Martin Tsvetkov and Maria Milanova
Crystals 2025, 15(5), 394; https://doi.org/10.3390/cryst15050394 - 24 Apr 2025
Viewed by 388
Abstract
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The [...] Read more.
Four different-sized carbon microspheres, CS, obtained by a facile hydrothermal method, are applied as a hard template for the preparation of a series of macroporous LaFeO3. The average particle size of the CS obtained is between 0.350 and 0.700 µm. The macroporous LaFeO3 are tested in a Fenton-like activation of peroxymonosulfate, PMS, for oxidation of tetracycline hydrochloride, TCH, in model water solution under visible-light irradiation. The effect of parameters such as type of irradiation, temperature of the reaction, and type of the water matrixes was tested. The oxidation of the pollutant TCH is evaluated by total organic carbon and organic nitrogen measurements. The results showed the superior catalytic activity of macroporous LaFeO3 in comparison to pure LaFeO3. Rate constants between 0.036 and 0.184 min−1 at 25 °C were obtained. The activation energy for the process with the most active macroporous LaFeO3 was 33.88 kJ/mol, a value lower than for the catalytic process with PMS only, proving the positive role of the macroporous LaFeO3 for TCH degradation. Radical scavenger measurements showed that singlet oxygen, produced during the catalytic degradation process, was responsible for the performance of macroporous LaFeO3/PMS/visible light for TCH degradation. The catalysts proved to be efficient and recyclable. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

19 pages, 5602 KiB  
Article
Synthesis of Cellulose Acetate Butyrate Microspheres as Precursor for Hard Carbon-Based Electrodes in Symmetric Supercapacitors
by Johanna Fischer, Katrin Thümmler, Igor Zlotnikov, Daria Mikhailova and Steffen Fischer
Polymers 2024, 16(15), 2176; https://doi.org/10.3390/polym16152176 - 30 Jul 2024
Cited by 2 | Viewed by 1695
Abstract
Cellulose microspheres have a wide range of applications due to their unique properties and versatility. Various preparation methods have been explored to tailor these microspheres for specific applications. Among these methods, the acetate method using cellulose acetate is well known. However, replacement of [...] Read more.
Cellulose microspheres have a wide range of applications due to their unique properties and versatility. Various preparation methods have been explored to tailor these microspheres for specific applications. Among these methods, the acetate method using cellulose acetate is well known. However, replacement of the acetate group through the butyrate group significantly extends the variety of morphological properties. In the present work, microspheres based on cellulose acetate butyrate are being developed with modified characteristics in terms of particle size, porosity, surface morphology and the inner structure of the microspheres. While the inner structure of cellulose acetate microspheres is predominantly porous, microspheres prepared from cellulose acetate butyrate are mainly filled or contain several smaller microspheres. Carbon materials from cellulose acetate butyrate microspheres exhibit a high specific surface area of 567 m2 g−1, even without further activation. Activation processes can further increase the specific surface area, accompanied by an adaptation of the pore structure. The prepared carbons show promising results in symmetrical supercapacitors with aqueous 6 M KOH electrolytes. Activated carbons derived from cellulose acetate butyrate microspheres demonstrate an energy density of 12 Wh kg−1 at a power density of 0.9 kW kg−1. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Figure 1

13 pages, 11767 KiB  
Article
Facile Fabrication of Porous MoSe2/Carbon Microspheres via the Aerosol Process as Anode Materials in Potassium-Ion Batteries
by Du Yeol Jo and Seung-Keun Park
Batteries 2024, 10(1), 25; https://doi.org/10.3390/batteries10010025 - 9 Jan 2024
Cited by 7 | Viewed by 2557
Abstract
Recently, potassium-ion batteries (KIBs) have attracted significant interest due to a number of factors, including the growing demand for energy and limited lithium resources. However, their practical use is hampered by poor cycling stability due to the large size of K+. [...] Read more.
Recently, potassium-ion batteries (KIBs) have attracted significant interest due to a number of factors, including the growing demand for energy and limited lithium resources. However, their practical use is hampered by poor cycling stability due to the large size of K+. Therefore, it is critical to develop a structural design that effectively suppresses large volume changes. This study presents a simple method of using a salt template to fabricate porous microspheres (p-MoSe2@C MS) of MoSe2 and a carbon matrix as anode materials in KIBs. These microspheres have a distinct porous design, with uniformly distributed MoSe2 nanocrystals embedded in the carbon matrix to prevent MoSe2 overgrowth due to material diffusion during heat treatment. The manufacturing process combined one-step spray drying with recyclable NaCl as a hard template. Through a two-step thermal process under an inert atmosphere, the initial dextrin, NaCl, and Mo salt microspheres were converted into a p-MoSe2@N MS composite. The carbon structure derived from the dextrin maintained the shape of the microspheres when NaCl was removed, ensuring no overgrowth of MoSe2. This well-designed porous structure improves the interaction with the electrolyte, facilitating the transport of ions and electrons and reducing the K+ diffusion distances. In addition, the porous carbon structure accommodates large volume changes during cycling and maintains its structural strength. As a result, p-MoSe2@C MS composite exhibits superior electrochemical properties, with remarkable capacity, long-term cycling stability (193 mA h g−1 after 500 cycles at 2.0 A g−1), and rate capability. Full article
Show Figures

Graphical abstract

12 pages, 3955 KiB  
Article
Insight into a Nitrogen-Doping Mechanism in a Hard-Carbon-Microsphere Anode Material for the Long-Term Cycling of Potassium-Ion Batteries
by Changdong Chen, Kai Zhao, Ming La and Chenghao Yang
Materials 2022, 15(12), 4249; https://doi.org/10.3390/ma15124249 - 15 Jun 2022
Cited by 11 | Viewed by 3024
Abstract
To investigate the alternatives to lithium-ion batteries, potassium-ion batteries have attracted considerable interest due to the cost-efficiency of potassium resources and the relatively lower standard redox potential of K+/K. Among various alternative anode materials, hard carbon has the advantages of extensive [...] Read more.
To investigate the alternatives to lithium-ion batteries, potassium-ion batteries have attracted considerable interest due to the cost-efficiency of potassium resources and the relatively lower standard redox potential of K+/K. Among various alternative anode materials, hard carbon has the advantages of extensive resources, low cost, and environmental protection. In the present study, we synthesize a nitrogen-doping hard-carbon-microsphere (N-SHC) material as an anode for potassium-ion batteries. N-SHC delivers a high reversible capacity of 248 mAh g−1 and a promoted rate performance (93 mAh g−1 at 2 A g−1). Additionally, the nitrogen-doping N-SHC material also exhibits superior cycling long-term stability, where the N-SHC electrode maintains a high reversible capacity at 200 mAh g−1 with a capacity retention of 81% after 600 cycles. DFT calculations assess the change in K ions’ absorption energy and diffusion barriers at different N-doping effects. Compared with an original hard-carbon material, pyridinic-N and pyrrolic-N defects introduced by N-doping display a positive effect on both K ions’ absorption and diffusion. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Figure 1

12 pages, 4706 KiB  
Article
Preparation of Hollow Niobium Oxide Nanospheres with Enhanced Catalytic Activity for Oxidative Desulfurization
by Yong Wang, Lei Ren, Zifeng Li and Feng Xin
Nanomaterials 2022, 12(7), 1106; https://doi.org/10.3390/nano12071106 - 28 Mar 2022
Cited by 4 | Viewed by 2483
Abstract
Hollow niobium oxide nanospheres were successfully synthesized by using prepared three-dimensional (3D) mesoporous carbon as the hard template. The 3D mesoporous carbon materials were prepared by using histidine as the carbon source and silica microspheres as the hard template. The samples were characterized [...] Read more.
Hollow niobium oxide nanospheres were successfully synthesized by using prepared three-dimensional (3D) mesoporous carbon as the hard template. The 3D mesoporous carbon materials were prepared by using histidine as the carbon source and silica microspheres as the hard template. The samples were characterized by XRD, BET, SEM, TEM and other methods. The results show that the prepared niobium oxide nanospheres have a hollow spherical structure with an outer diameter of about 45 nm and possess a high specific surface area of 134.3 m2·g−1. Furthermore, the 3D mesoporous carbon materials have a typical porous structure with a high specific surface area of 893 m2·g−1. The hollow niobium oxide nanospheres exhibit high catalytic activity in oxidative desulfurization. Under optimal reaction conditions, the DBT conversion rate of the simulated oil is as high as 98.5%. Finally, a possible reaction mechanism is proposed. Full article
Show Figures

Graphical abstract

13 pages, 3720 KiB  
Article
Characterization of Polyhydroxybutyrate-Based Composites Prepared by Injection Molding
by Marcos M. Hernandez, Nevin S. Gupta, Kwan-Soo Lee, Aaron C. Pital, Babetta L. Marrone, Carl N. Iverson and Joseph H. Dumont
Polymers 2021, 13(24), 4444; https://doi.org/10.3390/polym13244444 - 18 Dec 2021
Cited by 4 | Viewed by 3292
Abstract
The waste generated by single-use plastics is often non-recyclable and non-biodegradable, inevitably ending up in our landfills, ecosystems, and food chain. Through the introduction of biodegradable polymers as substitutes for common plastics, we can decrease our impact on the planet. In this study, [...] Read more.
The waste generated by single-use plastics is often non-recyclable and non-biodegradable, inevitably ending up in our landfills, ecosystems, and food chain. Through the introduction of biodegradable polymers as substitutes for common plastics, we can decrease our impact on the planet. In this study, we evaluate the changes in mechanical and thermal properties of polyhydroxybutyrate-based composites with various additives: Microspheres, carbon fibers or polyethylene glycol (2000, 10,000, and 20,000 MW). The mixtures were injection molded using an in-house mold attached to a commercial extruder. The resulting samples were characterized using microscopy and a series of spectroscopic, thermal, and mechanical techniques. We have shown that the addition of carbon fibers and microspheres had minimal impact on thermal stability, whereas polyethylene glycol showed slight improvements at higher molecular weights. All of the composite samples showed a decrease in hardness and compressibility. The findings described in this study will improve our understanding of polyhydroxybutyrate-based composites prepared by injection molding, enabling advancements in integrating biodegradable plastics into everyday products. Full article
(This article belongs to the Special Issue Mechanical Performance of Sustainable Bio-Based Compounds)
Show Figures

Graphical abstract

9 pages, 3227 KiB  
Article
Combining Soft- and Hard-Templating Approaches in MWW-Type Zeolites
by Anderson Joel Schwanke, Jaíne Fernandes Gomes, Katia Bernardo-Gusmão and Sibele Pergher
Molecules 2020, 25(15), 3335; https://doi.org/10.3390/molecules25153335 - 23 Jul 2020
Cited by 5 | Viewed by 3382
Abstract
A combination of hard-templating (HT) and soft-templating (ST) approaches was studied to obtain MWW-type materials with intermediate physicochemical properties. The HT methodology involved the introduction of carbon particles as hard templates during gel synthesis to obtain a layered zeolitic precursor (LZP) with particles [...] Read more.
A combination of hard-templating (HT) and soft-templating (ST) approaches was studied to obtain MWW-type materials with intermediate physicochemical properties. The HT methodology involved the introduction of carbon particles as hard templates during gel synthesis to obtain a layered zeolitic precursor (LZP) with particles possessing a microspherical morphology. The LZP obtained was treated with surfactants as soft templates to expand the layers of the LZP, followed by a pillaring procedure. The materials were characterized by X-ray diffraction, transmission and scanning electron microscopy, elemental analysis and N2 adsorption. The results demonstrate that the obtained material possesses intermediate properties from both approaches, with interparticle mesopores/macropores and pore sizes between 18 and 46 Å. However, the ST procedure causes a partial disruption of some microspheres, forming small crystallite aggregates, and results in a decrease in the number of interparticle mesopores/macropores previously formed by the HT method. Full article
(This article belongs to the Special Issue Zeolitic Microporous Materials and Their Applications)
Show Figures

Graphical abstract

12 pages, 1861 KiB  
Article
Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials
by Guillermo Guerrero-Vaca, David Carrizo-Tejero, Óscar Rodríguez-Alabanda, Pablo E. Romero and Esther Molero
Materials 2020, 13(3), 799; https://doi.org/10.3390/ma13030799 - 10 Feb 2020
Cited by 11 | Viewed by 3751
Abstract
Polytetrafluoroethylene (PTFE) coatings are used in many applications and processing industries. With their use, they wear out and lose properties and must be replaced by new ones if the cost of the element so advises. There are different stripping techniques, but almost all [...] Read more.
Polytetrafluoroethylene (PTFE) coatings are used in many applications and processing industries. With their use, they wear out and lose properties and must be replaced by new ones if the cost of the element so advises. There are different stripping techniques, but almost all of them are very difficult and require strict environmental controls. It is a challenge to approach the process through efficient and more sustainable techniques. In the present work, we have studied the stripping of PTFE coatings by projection with abrasives (1 step) as an alternative to carbonization + sandblasting procedures (2 steps). For this purpose, different types of abrasives have been selected: brown corundum, white corundum, glass microspheres, plastic particles, and a walnut shell. The tests were performed at pressures from 0.4 to 0.6 MPa on PTFE-coated aluminium substrates of EN AW-5182 H111 alloy. Stripping rates, surface roughness, and substrate hardness have been studied. Scanning electron microscopy (SEM) images of sandblasted specimens have also been obtained. All abrasives improved mechanical and surface properties in one-step vs. two-step processes. The abrasives of plastic and glass microspheres are the most appropriate for the one-step process, which increases the hardness and roughness level Ra in the substrate. Corundum abrasives enable the highest stripping rates. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 7484 KiB  
Article
UV-Curable Hydrophobic Coatings of Functionalized Carbon Microspheres with Good Mechanical Properties and Corrosion Resistance
by Jiajia Wen, Chengchen Feng, Huijie Li, Xinghai Liu, Fuyuan Ding, Houbin Li and Chi Huang
Coatings 2018, 8(12), 439; https://doi.org/10.3390/coatings8120439 - 29 Nov 2018
Cited by 5 | Viewed by 4684
Abstract
Polyurethane acrylates (PUAs) are a kind of UV curable prepolymer with excellent comprehensive performance. However, PUAs are highly hydrophilic and when applied outdoors, presenting serious problems caused by rain such as discoloring, losing luster and blistering. Thus, it’s important to improve their hydrophobicity [...] Read more.
Polyurethane acrylates (PUAs) are a kind of UV curable prepolymer with excellent comprehensive performance. However, PUAs are highly hydrophilic and when applied outdoors, presenting serious problems caused by rain such as discoloring, losing luster and blistering. Thus, it’s important to improve their hydrophobicity and resistance against corrosion. In this paper, carbon microspheres (CMSs) were modified through chemical grafting method. Active double bonds were introduced onto the surface of organic carbon microspheres (OCMSs) and the functional product was referred to as FCMS. The results of Transmission Electron Microscope (TEM), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric analysis (TGA) showed that organic chain segments were successfully connected to the surface of OCMSs and the grafting efficiency was as high as 16%. FCMSs were successfully added into UV-curable polyurethane acrylate prepolymer to achieve a hydrophobic coating layer with good mechanical properties, thermal stability and corrosion resistance. When the addition of FCMSs were 1%, thermogravimetric analysis (TGA) results showed that 5% of the initial mass was lost at 297 °C. The water absorption decreased from 52% to 38% and the water contact angle of the PUA composite increased from 72° to 106°. The pencil hardness increased to 4H and obvious crack termination phenomenon was observed in SEM images. Moreover, the corrosion rate was decreased from 0.124 to 0.076 mm/a. Full article
(This article belongs to the Special Issue Mechanical Properties of Nanostructured Coatings)
Show Figures

Graphical abstract

Back to TopTop