Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = handedness-preserving mirror

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6663 KB  
Article
Tuning Q-Factor and Perfect Absorption Using Coupled Tamm States on Polarization-Preserving Metasurface
by Natalya V. Rudakova, Rashid G. Bikbaev, Larisa E. Tyryshkina, Stepan Ya. Vetrov and Ivan V. Timofeev
Photonics 2023, 10(12), 1391; https://doi.org/10.3390/photonics10121391 - 18 Dec 2023
Cited by 2 | Viewed by 2678
Abstract
The circular polarization of light flips its handedness after a conventional metallic mirror reflection. Therefore, a polarization-preserving metasurface is a crucially important element in a series of chiral photonic structures. They include tunable cholesteric LCs and anisotropic photonic crystals. Chiral structures are rich [...] Read more.
The circular polarization of light flips its handedness after a conventional metallic mirror reflection. Therefore, a polarization-preserving metasurface is a crucially important element in a series of chiral photonic structures. They include tunable cholesteric LCs and anisotropic photonic crystals. Chiral structures are rich in interfacial localized modes including Tamm states. In this report, coupled modes formed as a result of the interaction between two chiral optical Tamm states or a chiral optical Tamm state and a chiral Tamm plasmon polariton are analytically and numerically investigated. It is shown that the effective control of coupled modes can be carried out by changing the pitch of the cholesteric and the angle between the optical axis of the cholesteric and the polarization-preserving anisotropic mirror. The influence of the metasurface period on the spectral characteristics of coupled modes is investigated. The possibility of realizing a bound state in the continuum of the Friedrich–Wintgen type, resulting from the destructive interference of coupled modes, which leads to the collapse of the resonance line corresponding to the chiral optical Tamm state, has been demonstrated. Full article
(This article belongs to the Special Issue Multifunctional Metasurfaces: Design Strategies and Applications)
Show Figures

Figure 1

15 pages, 1983 KB  
Article
Chiral Optical Tamm States: Temporal Coupled-Mode Theory
by Ivan V. Timofeev, Pavel S. Pankin, Stepan Ya. Vetrov, Vasily G. Arkhipkin, Wei Lee and Victor Ya. Zyryanov
Crystals 2017, 7(4), 113; https://doi.org/10.3390/cryst7040113 - 17 Apr 2017
Cited by 19 | Viewed by 6934
Abstract
The chiral optical Tamm state (COTS) is a special localized state at the interface of a handedness-preserving mirror and a structurally chiral medium such as a cholesteric liquid crystal or a chiral sculptured thin film. The spectral behavior of COTS, observed as reflection [...] Read more.
The chiral optical Tamm state (COTS) is a special localized state at the interface of a handedness-preserving mirror and a structurally chiral medium such as a cholesteric liquid crystal or a chiral sculptured thin film. The spectral behavior of COTS, observed as reflection resonances, is described by the temporal coupled-mode theory. Mode coupling is different for two circular light polarizations because COTS has a helical structure replicating that of the cholesteric. The mode coupling for co-handed circularly polarized light exponentially attenuates with the cholesteric layer thickness since the COTS frequency falls into the stop band. Cross-handed circularly polarized light freely goes through the cholesteric layer and can excite COTS when reflected from the handedness-preserving mirror. The coupling in this case is proportional to anisotropy of the cholesteric and theoretically only anisotropy in magnetic permittivity can ultimately cancel this coupling. These two couplings being equal result in a polarization crossover (the Kopp–Genack effect) for which a linear polarization is optimal to excite COTS. The corresponding cholesteric thickness and scattering matrix for COTS are generally described by simple expressions. Full article
Show Figures

Figure 1

Back to TopTop