Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = gypsum karst ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2417 KiB  
Article
Sulfidic Habitats in the Gypsum Karst System of Monte Conca (Italy) Host a Chemoautotrophically Supported Invertebrate Community
by Giuseppe Nicolosi, Sandro Galdenzi, Maria Anna Messina, Ana Z. Miller, Salvatore Petralia, Serban M. Sarbu and Marco Isaia
Int. J. Environ. Res. Public Health 2022, 19(5), 2671; https://doi.org/10.3390/ijerph19052671 - 25 Feb 2022
Cited by 6 | Viewed by 2603
Abstract
The great diversity of the invertebrate community thriving in the deepest sections of the gypsum karst system of the Monte Conca sinkhole (Sicily, Italy) suggests the existence of a complex food web associated with a sulfidic pool and chemoautotrophic microbial activity. To shed [...] Read more.
The great diversity of the invertebrate community thriving in the deepest sections of the gypsum karst system of the Monte Conca sinkhole (Sicily, Italy) suggests the existence of a complex food web associated with a sulfidic pool and chemoautotrophic microbial activity. To shed light on the peculiarity of this biological assemblage, we investigated the species composition of the invertebrate community and surveyed trophic interactions by stable isotope analysis. The faunal investigation conducted by visual censuses and hand sampling methods led to the discovery of a structured biological assemblage composed of both subterranean specialized and non-specialized species, encompassing all trophic levels. The community was remarkably diverse in the sulfidic habitat and differed from other non-sulfidic habitats within the cave in terms of stable isotope ratios. This pattern suggests the presence of a significant chemoautotrophic support by the microbial communities to the local food web, especially during the dry season when the organic input from the surface is minimal. However, when large volumes of water enter the cave due to local agricultural activities (i.e., irrigation) or extreme precipitation events, the sulfidic habitat of the cave is flooded, inhibiting the local autotrophic production and threatening the conservation of the entire ecosystem. Full article
(This article belongs to the Special Issue Impact of Aboveground Disturbances on Subsurface Environments)
Show Figures

Figure 1

20 pages, 23542 KiB  
Article
Phytoplankton Community Structure in Highly-Mineralized Small Gypsum Karst Lake (Russia)
by Alexander Okhapkin, Ekaterina Sharagina, Pavel Kulizin, Natalja Startseva and Ekaterina Vodeneeva
Microorganisms 2022, 10(2), 386; https://doi.org/10.3390/microorganisms10020386 - 7 Feb 2022
Cited by 11 | Viewed by 2415
Abstract
Gypsum karst lakes are unique water ecosystems characterized by specific habitat conditions for living organisms, including phytoplankton species, as primary producers and mediating biogeochemical cycles in the water bodies. Studies of diversity and structure of phytoplankton communities can be used to identify the [...] Read more.
Gypsum karst lakes are unique water ecosystems characterized by specific habitat conditions for living organisms, including phytoplankton species, as primary producers and mediating biogeochemical cycles in the water bodies. Studies of diversity and structure of phytoplankton communities can be used to identify the specific and typical lake features and plan basin-wide monitoring. The aim of this research was to analyze the structural variables of algocenoses in the small gypsum karstic Lake Klyuchik (Middle Volga basin), atypical for the subzone of mixed coniferous and deciduous forest zone high values of water mineralization (brackish water) and low temperatures. The lake has two water areas, connected by a shallow strait (ecotone zone) and differing from each other in the chemical compositions and physical properties of the water. A total of 133 species of phytoplankton with prevalence percentages of Bacillariophyta (46%), Chlorophyta (24%), and Ochrophyta (11%) were found; α-diversity varied from 4 to 30 specific and intraspecific taxa per sample. According to Spearman’s correlation coefficients, the diversity indices (Shannon, Pielou, Simpson) were mainly determined by the number of dominant species. The uniquely high (up to 130 g/m3) biomass of phytoplankton was noted in the ecotone, on the border between the water column and the bottom. The formation of mono- and oligo-dominant nannoplankton diatom communities with a predominance of the rare species Cyclotella distinguenda Hustedt was demonstrated there. The roles of flagellate algae and cyanobacteria were found to be less significant. Full article
Show Figures

Figure 1

18 pages, 1826 KiB  
Article
Exploring Viral Diversity in a Gypsum Karst Lake Ecosystem Using Targeted Single-Cell Genomics
by Sigitas Šulčius, Gediminas Alzbutas, Viktorija Juknevičiūtė, Eugenijus Šimoliūnas, Petras Venckus, Monika Šimoliūnienė and Ričardas Paškauskas
Genes 2021, 12(6), 886; https://doi.org/10.3390/genes12060886 - 8 Jun 2021
Cited by 5 | Viewed by 3860
Abstract
Little is known about the diversity and distribution of viruses infecting green sulfur bacteria (GSB) thriving in euxinic (sulfuric and anoxic) habitats, including gypsum karst lake ecosystems. In this study, we used targeted cell sorting combined with single-cell sequencing to gain insights into [...] Read more.
Little is known about the diversity and distribution of viruses infecting green sulfur bacteria (GSB) thriving in euxinic (sulfuric and anoxic) habitats, including gypsum karst lake ecosystems. In this study, we used targeted cell sorting combined with single-cell sequencing to gain insights into the gene content and genomic potential of viruses infecting sulfur-oxidizing bacteria Chlorobium clathratiforme, obtained from water samples collected during summer stratification in gypsum karst Lake Kirkilai (Lithuania). In total, 82 viral contigs were bioinformatically identified in 62 single amplified genomes (SAGs) of C. clathratiforme. The majority of viral gene and protein sequences showed little to no similarity with phage sequences in public databases, uncovering the vast diversity of previously undescribed GSB viruses. We observed a high level of lysogenization in the C. clathratiforme population, as 87% SAGs contained intact prophages. Among the thirty identified auxiliary metabolic genes (AMGs), two, thiosulfate sulfurtransferase (TST) and thioredoxin-dependent phosphoadenosine phosphosulfate (PAPS) reductase (cysH), were found to be involved in the oxidation of inorganic sulfur compounds, suggesting that viruses can influence the metabolism and cycling of this essential element. Finally, the analysis of CRISPR spacers retrieved from the consensus C. clathratiforme genome imply persistent and active virus–host interactions for several putative phages prevalent among C. clathratiforme SAGs. Overall, this study provides a glimpse into the diversity of phages associated with naturally occurring and highly abundant sulfur-oxidizing bacteria. Full article
(This article belongs to the Special Issue Genetics and Genomics of Metabolism in Microorganisms)
Show Figures

Figure 1

Back to TopTop