Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = guyed mast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 34821 KB  
Article
The Study and Application of Quadrilateral Space-Time Absolute Nodal Coordinate Formulation Cable Element
by Dekun Chen, Jia Feng, Naidan Hou and Zhou Huang
Machines 2025, 13(12), 1112; https://doi.org/10.3390/machines13121112 - 2 Dec 2025
Viewed by 312
Abstract
The construction of a high-order shape function is a key and difficulty for unstructured grid mesh and sliding boundary problems. In this paper, a construction method of space-time absolute nodal coordinate formulation quadrilateral cable (SACQ) is proposed, and the accuracy of the SACQ [...] Read more.
The construction of a high-order shape function is a key and difficulty for unstructured grid mesh and sliding boundary problems. In this paper, a construction method of space-time absolute nodal coordinate formulation quadrilateral cable (SACQ) is proposed, and the accuracy of the SACQ element is studied and verified with three different applications. First, the shape function of SACQ is constructed with spatiotemporal reduction coordinates, and the action integral of SACQ is composed with the Lagrangian function and discrete with perspective transformation. Second, the numerical convergence region is discussed and determined with the Courant number. Furthermore, a space-time nodal dislocation and its relation with the Courant number are studied. The simulation and verification are focusing on some realistic problems. Finally, a one-sided impact, a free-flexible pendulum, a taut string with a sliding boundary and a deployable guyed mast under an impact transverse wave are simulated. In these problems, an unstructured grid meshed with SACQ has similar energy convergence and accuracy to a structured grid but shows better efficiency. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

43 pages, 2107 KB  
Article
Technical Design and Virtual Testing of a Dynamic Vibration Absorber for the Vibration Control of a Flexible Structure
by Carmine Maria Pappalardo, Giuseppe Isola, Angela Donadio, Rosario La Regina, Valentino Paolo Berardi and Domenico Guida
Dynamics 2025, 5(2), 19; https://doi.org/10.3390/dynamics5020019 - 21 May 2025
Cited by 3 | Viewed by 3154
Abstract
This research work aims to design and develop a dynamic vibration absorber that effectively reduces the vibrations of a flexible structure subjected to external loads. The analysis presented in this paper initially focuses on identifying the resonance frequencies of a typical structural system, [...] Read more.
This research work aims to design and develop a dynamic vibration absorber that effectively reduces the vibrations of a flexible structure subjected to external loads. The analysis presented in this paper initially focuses on identifying the resonance frequencies of a typical structural system, which serves as the case study, since these frequencies are critical to dampening due to their potential to cause excessively large vibration amplitudes. Following this, the optimal parameters of the vibration absorber, including the mass, stiffness, and damping characteristics of the proposed design, were determined. Additionally, this paper proposes and examines the use of viscous-type damping, which is achieved through piston–cylinder systems connected to the structural components of the analyzed frame structure. Thus, the main contributions of this work include the analytical dimensioning, the technical design, and the virtual prototyping of a dynamic absorber constructed using a guyed mast structure capable of significantly reducing mechanical vibrations. This design solution ultimately enhances the strength and durability of the frame structure represented in the case study under external excitation, particularly in the worst-case scenario of seismic action. Furthermore, a key aspect of this study is implementing a new numerical procedure for identifying the system equivalent stiffness coefficient based on its mass and modal parameters, which is particularly useful in engineering applications. The numerical experiments conducted in this work support the effectiveness of the proposed design solution, devised specifically for the dynamic vibration absorber developed in this paper. Full article
Show Figures

Figure 1

17 pages, 3975 KB  
Article
Numerical Analysis of Structural Vibrations in Masts—A Practical Study Applied to a 28-Meter Tugboat
by Arturo Silva-Campillo and Francisco Pérez-Arribas
Appl. Sci. 2024, 14(13), 5751; https://doi.org/10.3390/app14135751 - 1 Jul 2024
Cited by 4 | Viewed by 2755
Abstract
This article investigates the vibration analysis of the mast on the bridge top of a 28 m tugboat, in the quasi-static regime. The study aims to determine the natural frequencies using an equivalent dynamic model of the mast and considers the accelerations of [...] Read more.
This article investigates the vibration analysis of the mast on the bridge top of a 28 m tugboat, in the quasi-static regime. The study aims to determine the natural frequencies using an equivalent dynamic model of the mast and considers the accelerations of different degrees of freedom of the vessel. Practical design and reinforcement strategies for the local bridge top structure are proposed, utilizing numerical and analytical tools. The investigation explores various alternatives to optimize the structural arrangement. By analyzing the modal behavior, insights are provided for efficient design and reinforcement. The results contribute to understanding the mast’s vibration characteristics, offering guidance for similar structures. This study employs numerical and analytical methods, enhancing the optimization of the mast’s behavior. It determines natural frequencies, proposes practical design strategies, and explores alternatives for structural optimization. The findings provide insights for shipbuilding and mast design applications in other vessels and industries such as radar mast, compass deck, and guyed mast. Full article
Show Figures

Figure 1

32 pages, 4155 KB  
Article
Size and Shape Optimization of a Guyed Mast Structure under Wind, Ice and Seismic Loading
by Raffaele Cucuzza, Marco Martino Rosso, Angelo Aloisio, Jonathan Melchiorre, Mario Lo Giudice and Giuseppe Carlo Marano
Appl. Sci. 2022, 12(10), 4875; https://doi.org/10.3390/app12104875 - 11 May 2022
Cited by 32 | Viewed by 7548
Abstract
This paper discusses the size and shape optimization of a guyed radio mast for radiocommunications. The considered structure represents a widely industrial solution due to the recent spread of 5G and 6G mobile networks. The guyed radio mast was modeled with the finite [...] Read more.
This paper discusses the size and shape optimization of a guyed radio mast for radiocommunications. The considered structure represents a widely industrial solution due to the recent spread of 5G and 6G mobile networks. The guyed radio mast was modeled with the finite element software SAP2000 and optimized through a genetic optimization algorithm (GA). The optimization exploits the open application programming interfaces (OAPI) SAP2000-Matlab. Static and dynamic analyses were carried out to provide realistic design scenarios of the mast structure. The authors considered the action of wind, ice, and seismic loads as variable loads. A parametric study on the most critical design variables includes several optimization scenarios to minimize the structure’s total self-weight by varying the most relevant parameters selected by a preliminary sensitivity analysis. In conclusion, final design considerations are discussed by highlighting the best optimization scenario in terms of the objective function and the number of parameters involved in the analysis. Full article
(This article belongs to the Topic Artificial Intelligence (AI) Applied in Civil Engineering)
Show Figures

Figure 1

24 pages, 3118 KB  
Article
Tie Rod-Equivalent Non-Linear Constitutive Law for Uniformly Loaded Cables
by Pietro Croce
Materials 2021, 14(19), 5502; https://doi.org/10.3390/ma14195502 - 23 Sep 2021
Cited by 2 | Viewed by 2809
Abstract
Cables are typically used in engineering applications as tensile members. Relevant examples are the main cables of suspension bridges, the stays of cable-stayed bridges, the load-bearing and stabilizing cables of tensile structures, the anchor cables of floating mooring structures, the guy-ropes for ship [...] Read more.
Cables are typically used in engineering applications as tensile members. Relevant examples are the main cables of suspension bridges, the stays of cable-stayed bridges, the load-bearing and stabilizing cables of tensile structures, the anchor cables of floating mooring structures, the guy-ropes for ship masts, towers, and wind turbines, the copper cables of electrical power lines. Since cables are characterized by non-linear behavior, analysis of cable structures often requires advanced techniques, like non-linear FEM, able to consider geometric non-linearity. Nevertheless, a traditional simplified approach consists in replacing the cable with an equivalent tie rod, characterized by a suitable non-linear constitutive law. Currently used equivalent constitutive laws have been derived by Dischinger, Ernst and Irvine. Since the equivalence is restricted to taut cables, characterized by small sag to chord ratios, these traditional formulae are not appropriate for uniformly loaded sagging cables: the main cables of suspension bridges are a particularly emblematic case. Despite some recent attempts to find more refined solutions, the problem is still open, since closed form solutions of general validity are not available. In the paper, general analytical formulae of the non-linear constitutive law of the equivalent tie rod are proposed, distinguishing two relevant cases, according as the length of the cable can vary or not. The expressions, derived by applying the general form of the theorem of virtual work, can be applied independently on the material, on the sag to chord ratio, on the load intensity and on the stress level, so allowing the replacement of the whole cable with a single equivalent tie rod. The expressions are critically discussed referring to a wide parametric study also in comparison with the existing formulae, stressing the influence of the most relevant parameters. Full article
Show Figures

Figure 1

19 pages, 7479 KB  
Article
Equivalent Axial Stiffness of Horizontal Stays
by Pietro Croce
Appl. Sci. 2020, 10(18), 6263; https://doi.org/10.3390/app10186263 - 9 Sep 2020
Cited by 4 | Viewed by 3485
Abstract
Cable-stayed structures are widely employed in several fields of civil, industrial, electrical and ocean engineering. Typical applications are cable-stayed building roofs, bridges, guyed masts, overhead electrical lines, and floating device anchorages. Since the cable behavior is often highly nonlinear, suitable equivalent mechanical cable [...] Read more.
Cable-stayed structures are widely employed in several fields of civil, industrial, electrical and ocean engineering. Typical applications are cable-stayed building roofs, bridges, guyed masts, overhead electrical lines, and floating device anchorages. Since the cable behavior is often highly nonlinear, suitable equivalent mechanical cable models are often adopted in analyzing this kind of structures. Usually, like in the classical Dischinger’s approach, stays are treated as straight rods offering an equivalent axial tangent stiffness, so that each of them can be substituted with an appropriate equivalent nonlinear spring or truss element. Formulae expressing equivalent stiffness provided by classical methods are satisfactory only when the cable is highly stressed, and therefore its sag is small with respect to its chord; on the contrary, when the cable is slack, they give often contradictory or meaningless results. Aiming to remove that limitation, a more refined approach based on the application of the virtual work principle is discussed. Important products of that original rational criterion are accurate and closed form innovative expressions of the tangent stiffness of the cable, whose field of application is independent on the sag to chord ratio of the cable, as well as on the magnitude of the normal stresses. Referring to some relevant case studies, the results obtained applying these new formulae are critically discussed for cables made of different materials, also in comparison with the approximate expressions provided by simplified methods. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop