Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = green-lipped mussel protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8430 KiB  
Article
Metabolite Changes of Perna canaliculus Following a Laboratory Marine Heatwave Exposure: Insights from Metabolomic Analyses
by Awanis Azizan, Leonie Venter, Peet J. Jansen van Rensburg, Jessica A. Ericson, Norman L. C. Ragg and Andrea C. Alfaro
Metabolites 2023, 13(7), 815; https://doi.org/10.3390/metabo13070815 - 3 Jul 2023
Cited by 9 | Viewed by 2742
Abstract
Temperature is considered to be a major abiotic factor influencing aquatic life. Marine heatwaves are emerging as threats to sustainable shellfish aquaculture, affecting the farming of New Zealand’s green-lipped mussel [Perna canaliculus (Gmelin, 1791)]. In this study, P. canaliculus were gradually exposed [...] Read more.
Temperature is considered to be a major abiotic factor influencing aquatic life. Marine heatwaves are emerging as threats to sustainable shellfish aquaculture, affecting the farming of New Zealand’s green-lipped mussel [Perna canaliculus (Gmelin, 1791)]. In this study, P. canaliculus were gradually exposed to high-temperature stress, mimicking a five-day marine heatwave event, to better understand the effects of heat stress on the metabolome of mussels. Following liquid chromatography-tandem mass spectrometry analyses of haemolymph samples, key sugar-based metabolites supported energy production via the glycolysis pathway and TCA cycle by 24 h and 48 h of heat stress. Anaerobic metabolism also fulfilled the role of energy production. Antioxidant molecules acted within thermally stressed mussels to mitigate oxidative stress. Purine metabolism supported tissue protection and energy replenishment. Pyrimidine metabolism supported the protection of nucleic acids and protein synthesis. Amino acids ensured balanced intracellular osmolality at 24 h and ammonia detoxification at 48 h. Altogether, this work provides evidence that P. canaliculus has the potential to adapt to heat stress up to 24 °C by regulating its energy metabolism, balancing nucleotide production, and implementing oxidative stress mechanisms over time. The data reported herein can also be used to evaluate the risks of heatwaves and improve mitigation strategies for aquaculture. Full article
Show Figures

Graphical abstract

17 pages, 3017 KiB  
Article
Emersion and Relative Humidity Modulate Stress Response and Recovery Dynamics in Juvenile Mussels (Perna canaliculus)
by Natalí J. Delorme, David J. Burritt, Norman L. C. Ragg and Paul M. South
Metabolites 2021, 11(9), 580; https://doi.org/10.3390/metabo11090580 - 27 Aug 2021
Cited by 19 | Viewed by 3090
Abstract
The early stages of intertidal mussels, including the green-lipped mussel, Perna canaliculus, face both direct and indirect environmental threats. Stressors may influence physiological status and, ultimately, survival. An understanding of the nature of stress experienced is critical to inform conservation and aquaculture [...] Read more.
The early stages of intertidal mussels, including the green-lipped mussel, Perna canaliculus, face both direct and indirect environmental threats. Stressors may influence physiological status and, ultimately, survival. An understanding of the nature of stress experienced is critical to inform conservation and aquaculture efforts. Here, we investigated oxidative stress dynamics in juvenile P. canaliculus in relation to emersion duration (1–20 h) and relative humidity (RH, 29–98%) by quantifying oxidative damage (protein carbonyls, lipid hydroperoxides, 8-hydroxydeoxyguanosine) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase and reductase). Mussels held in low RH during emersion experienced severe water loss (>70%), high mortality (>80%) and increased oxidative damage (35–45% increase compared to control conditions), while mussels held at high RH were not impacted, even after 20 h of air exposure. Following re-immersion, reoxygenation stress resulted in further increases in damage markers in mussels that had experienced dryer emersion conditions; protective action of antioxidants increased steadily during the 10 h re-immersion period, apparently supporting a reduction in damage markers after 1–5 h of immersion. Clearly, conditions during emersion, as well as duration, substantially influence physiological performance and recovery of juvenile mussels. Successful recruitment to intertidal beds or survival in commercial aquaculture operations may be mediated by the nature of emersion stress experienced by these vulnerable juveniles. Full article
(This article belongs to the Special Issue Ectotherms Metabolism: Plasticity and Adaptation)
Show Figures

Graphical abstract

19 pages, 2925 KiB  
Article
Partial Purification and Characterization of Bioactive Peptides from Cooked New Zealand Green-Lipped Mussel (Perna canaliculus) Protein Hydrolyzates
by Ramya Jayaprakash and Conrad O. Perera
Foods 2020, 9(7), 879; https://doi.org/10.3390/foods9070879 - 4 Jul 2020
Cited by 31 | Viewed by 5034
Abstract
Proteins from fresh New Zealand green-lipped mussels were hydrolyzed for 240 min using pepsin and alcalase. The extent of the hydrolysis, antioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activities of each protein hydrolysate were investigated. Peptides obtained from pepsin hydrolysis after 30 min, [...] Read more.
Proteins from fresh New Zealand green-lipped mussels were hydrolyzed for 240 min using pepsin and alcalase. The extent of the hydrolysis, antioxidant, antimicrobial, and angiotensin-converting enzyme (ACE) inhibitory activities of each protein hydrolysate were investigated. Peptides obtained from pepsin hydrolysis after 30 min, named GPH, exhibited the highest antioxidant and ACE inhibitory activity, but no antimicrobial activity. Purification of the GPH using gel-filtration chromatography revealed that the protein fraction (GPH-IV*) containing peptides with a molecular weight (MW) below 5 kDa had the strongest antioxidant and ACE inhibitory activities. Further purification was done using reverse-phase HPLC (RP-HPLC) and the only major peak obtained (GPH-IV*-P2) had the highest antioxidant and ACE inhibitory activity. From this fraction, several bioactive peptides with an MW ≈ 5 kDa were identified using LC-MS and in silico analyses. This research highlights that green-lipped mussel protein hydrolysates could be used as a good source of bioactive peptides with potential therapeutic applications. Full article
(This article belongs to the Special Issue Bioactive Peptides: Characteristic, Bioavailability and Application)
Show Figures

Figure 1

13 pages, 982 KiB  
Review
Perna canaliculus and the Intestinal Microbiome
by Emma Tali Saltzman, Michael Thomsen, Sean Hall and Luis Vitetta
Mar. Drugs 2017, 15(7), 207; https://doi.org/10.3390/md15070207 - 30 Jun 2017
Cited by 11 | Viewed by 10124
Abstract
Natural medicines are often an attractive option for patients diagnosed with chronic conditions. Three main classes of bioactives that have been reported from marine mussel extracts include proteins, lipids and carbohydrates. Commercially, the most relevant species of marine mollusks belong to two genera, [...] Read more.
Natural medicines are often an attractive option for patients diagnosed with chronic conditions. Three main classes of bioactives that have been reported from marine mussel extracts include proteins, lipids and carbohydrates. Commercially, the most relevant species of marine mollusks belong to two genera, Perna and Mytilus. Specifically, the Perna canaliculus species has been repeatedly demonstrated to harbor anti-inflammatory compounds such as omega-3 polyunsaturated fatty acids (ω-3 PUFAs) that can ameliorate pro-inflammatory conditions, or proteins that can promote thrombin inhibitory activity. Recent clinical studies have posited that extracts from green-lipped mussels may lead to prebiotic activity in the intestinal microbiome that in turn has been reported to improve symptoms of osteoarthritis of the knee. Prebiotics have been reported to favorably interact with the intestinal microbiome through the proliferation of beneficial bacteria in the gut, suppressing exogenous and endogenous intestinal infections and promoting homeostasis by balancing local pro- and anti-inflammatory actions. Bioactive compounds from Perna canaliculus are functional foods and, in this regard, may positively interact with the intestinal microbiome and provide novel therapeutic solutions for intra-intestinal and extra-intestinal inflammatory conditions. Full article
(This article belongs to the Special Issue Nutraceuticals and Functional Foods)
Show Figures

Figure 1

Back to TopTop