Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = green EOR (GEOR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1863 KiB  
Review
Environmental Protection in Enhanced Oil Recovery and Its Waste and Effluents Treatment: A Critical Patent-Based Review of BRICS and Non-BRICS (2004–2023)
by Cristina M. Quintella
Sustainability 2025, 17(7), 2896; https://doi.org/10.3390/su17072896 - 25 Mar 2025
Viewed by 530
Abstract
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), [...] Read more.
Oil production will remain essential in the coming decades, requiring environmental responsibilities that are aligned with Agenda 2030. Enhanced oil recovery (EOR) increases recovery efficiency with low investment, but environmental protection technologies (EOR and Env), including green EOR (GEOR) and waste treatment (WT), must be integrated. The BRICS association, representing half of global oil production, promotes technology transfer in this context. Worldwide patent data (2004–2023) of EOR and Env technologies at TRL 4–5 in BRICS and non-BRICS countries were compared for nine GEOR (1489 patents) and nine WT (2292 patents) methods. China is the global leader (73%, being 98% of BRICS patents), maintaining dominance even when normalized by GDP. Non-BRICS patents are from the USA (41%), Japan (31%), and the Republic of Korea (14%). BRICS countries surpassed non-BRICS in 2014, with a 5.9% growth rate, −13.2% for non-BRICS, with all methods growing, whereas in non-BRICS, only water flocculation treatment is growing. BRICS technological specialization is expanding more rapidly than that of non-BRICS countries. BRICS countries exhibit higher relative technological advantages and distance in surfactants, polymers, macromolecules, sludge treatment, and multistage water treatment devices. Non-BRICS countries are more competitive in in situ combustion, water alternating gas (WAG), re-pressurization, vacuum techniques, flotation, water–oil separation, sorption, or precipitation, flocculation, and oil-contaminated water. China is the primary BRICS leader and is positioned to define BRICS policies regarding technology transfer and innovation. Technological partnerships between BRICS and non-BRICS countries are strongly recommended to enhance synergy and achieve sustainable and efficient production more rapidly. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

21 pages, 7240 KiB  
Article
Date-Leaf Carbon Particles for Green Enhanced Oil Recovery
by Bashirul Haq, Md. Abdul Aziz, Dhafer Al Shehri, Nasiru Salahu Muhammed, Shaik Inayath Basha, Abbas Saeed Hakeem, Mohammed Ameen Ahmed Qasem, Mohammed Lardhi and Stefan Iglauer
Nanomaterials 2022, 12(8), 1245; https://doi.org/10.3390/nano12081245 - 7 Apr 2022
Cited by 27 | Viewed by 3964
Abstract
Green enhanced oil recovery (GEOR) is an environmentally friendly enhanced oil recovery (EOR) process involving the injection of green fluids to improve macroscopic and microscopic sweep efficiencies while boosting tertiary oil production. Carbon nanomaterials such as graphene, carbon nanotube (CNT), and carbon dots [...] Read more.
Green enhanced oil recovery (GEOR) is an environmentally friendly enhanced oil recovery (EOR) process involving the injection of green fluids to improve macroscopic and microscopic sweep efficiencies while boosting tertiary oil production. Carbon nanomaterials such as graphene, carbon nanotube (CNT), and carbon dots have gained interest for their superior ability to increase oil recovery. These particles have been successfully tested in EOR, although they are expensive and do not extend to GEOR. In addition, the application of carbon particles in the GEOR method is not well understood yet, requiring thorough documentation. The goals of this work are to develop carbon nanoparticles from biomass and explore their role in GEOR. The carbon nanoparticles were prepared from date leaves, which are inexpensive biomass, through pyrolysis and ball-milling methods. The synthesized carbon nanomaterials were characterized using the standard process. Three formulations of functionalized and non-functionalized date-leaf carbon nanoparticle (DLCNP) solutions were chosen for core floods based on phase behavior and interfacial tension (IFT) properties to examine their potential for smart water and green chemical flooding. The carboxylated DLCNP was mixed with distilled water in the first formulation to be tested for smart water flood in the sandstone core. After water flooding, this formulation recovered 9% incremental oil of the oil initially in place. In contrast, non-functionalized DLCNP formulated with (the biodegradable) surfactant alkyl polyglycoside and NaCl produced 18% more tertiary oil than the CNT. This work thus provides new green chemical agents and formulations for EOR applications so that oil can be produced more economically and sustainably. Full article
(This article belongs to the Special Issue Nanomaterials for Catalysis and Energy Storage)
Show Figures

Figure 1

31 pages, 8802 KiB  
Article
Green Enhanced Oil Recovery for Carbonate Reservoirs
by Bashirul Haq
Polymers 2021, 13(19), 3269; https://doi.org/10.3390/polym13193269 - 25 Sep 2021
Cited by 21 | Viewed by 6479
Abstract
Green enhanced oil recovery (GEOR) is an eco-friendly EOR technique involving the injection of specific green fluids to improve macroscopic and microscopic sweep efficiencies, boosting residual oil production. The environmentally friendly surfactant-polymer (SP) flood is successfully tested in a sandstone reservoir. However, the [...] Read more.
Green enhanced oil recovery (GEOR) is an eco-friendly EOR technique involving the injection of specific green fluids to improve macroscopic and microscopic sweep efficiencies, boosting residual oil production. The environmentally friendly surfactant-polymer (SP) flood is successfully tested in a sandstone reservoir. However, the applicability of the SP method does not extend to carbonate reservoirs yet and requires comprehensive investigation. This work aims to explore the oil recovery competency of a green SP formulation in carbonate through experimental and modelling studies. Numerous formulations of SP with ketone, alcohol, and organic acid are selected based on phase behavior and interfacial tension (IFT) reduction capabilities to examine their potential for enhancing residual oil production from carbonate cores. A blending of nonionic green surfactant alkyl polyglucoside (APG), xanthan gum (XG) biopolymer, and butanone recovered 22% tertiary oil from the carbonate core. This formulation recovered more than double residual crude than that of the APG, XG, and acetone. Similarly, a combination of APG, XG, acrylic acid, and butanol increased significantly more oil than the APG, XG, and acrylic acid formulation. The APG, XG, and butanone mixture is efficient with regards to boosting tertiary oil recovery from the carbonate core. Full article
Show Figures

Figure 1

32 pages, 51503 KiB  
Review
Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery
by Nasiru Salahu Muhammed, Md. Bashirul Haq, Dhafer Al-Shehri, Mohammad Mizanur Rahaman, Alireza Keshavarz and S. M. Zakir Hossain
Polymers 2020, 12(10), 2429; https://doi.org/10.3390/polym12102429 - 21 Oct 2020
Cited by 51 | Viewed by 7594
Abstract
Several publications by authors in the field of petrochemical engineering have examined the use of chemically enhanced oil recovery (CEOR) technology, with a specific interest in polymer flooding. Most observations thus far in this field have been based on the application of certain [...] Read more.
Several publications by authors in the field of petrochemical engineering have examined the use of chemically enhanced oil recovery (CEOR) technology, with a specific interest in polymer flooding. Most observations thus far in this field have been based on the application of certain chemicals and/or physical properties within this technique regarding the production of 50–60% trapped (residual) oil in a reservoir. However, there is limited information within the literature about the combined effects of this process on whole properties (physical and chemical). Accordingly, in this work, we present a clear distinction between the use of xanthan gum (XG) and hydrolyzed polyacrylamide (HPAM) as a polymer flood, serving as a background for future studies. XG and HPAM have been chosen for this study because of their wide acceptance in relation to EOR processes. To this degree, the combined effect of a polymer’s rheological properties, retention, inaccessible pore volume (PV), permeability reduction, polymer mobility, the effects of salinity and temperature, and costs are all investigated in this study. Further, the generic screening and design criteria for a polymer flood with emphasis on XG and HPAM are explained. Finally, a comparative study on the conditions for laboratory (experimental), pilot-scale, and field-scale application is presented. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop