Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = granin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3252 KB  
Article
Chromogranin B Protects Human Umbilical Endothelial Cells against Oxidative Stress
by Elena Grossini, Sakthipriyan Venkatesan, Mohammad Mostafa Ola Pour, Daniela Ferrante, Daniela Surico, Rosanna Vaschetto, Vincenzo Cantaluppi and Mario Pirisi
Int. J. Mol. Sci. 2024, 25(19), 10296; https://doi.org/10.3390/ijms251910296 - 25 Sep 2024
Cited by 2 | Viewed by 1145
Abstract
Chromogranin B (CgB) is involved in the control of the cardiovascular system through the regulation of catecholamine release. Whether CgB can exert direct actions on the endothelium has not yet been clarified. Here, we aimed to investigate the effects of CgB on cell [...] Read more.
Chromogranin B (CgB) is involved in the control of the cardiovascular system through the regulation of catecholamine release. Whether CgB can exert direct actions on the endothelium has not yet been clarified. Here, we aimed to investigate the effects of CgB on cell viability, mitochondrial membrane potential, reactive oxygen species (ROS), glutathione (GSH), nitric oxide (NO) release, and the cytosolic calcium concentration ([Ca2+]c) in human vascular endothelial cells (HUVECs) cultured under both physiological and peroxidative conditions. In HUVECs, experiments were conducted to establish the proper concentration and timing of CgB stimulation. Thereafter, specific assays were used to evaluate the response of HUVECs cultured in physiologic or oxidative stress conditions to CgB in the presence or absence of β-adrenergic receptor agonists and antagonists and intracellular pathways blockers. Analysis of cell viability, mitochondrial membrane potential, and NO release revealed that CgB was able to cause increased effects in HUVECs cultured in physiological conditions. Additionally, the same analyses performed in HUVECs cultured with H2O2, showed protective effects exerted by CgB, which was also able to counteract ROS release and maintain GSH levels. Furthermore, CgB played a dual role on the [Ca2+]c depending on the physiological or peroxidative cell culturing conditions. In conclusion, our data provide new information about the direct role of CgB in the physiological regulation of endothelial function and highlight its potential as a protective agent against peroxidative conditions, such as those found in cardiovascular diseases. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

19 pages, 3141 KB  
Article
Study of Interannual Variability of the Winter Mesothermal Temperature Maximum Layer in Southern Baikal
by Ilya Aslamov, Elena Troitskaya, Ruslan Gnatovsky, Inna Portyanskaya, Sergey Lovtsov, Yuri Bukin and Nikolay Granin
Water 2024, 16(1), 21; https://doi.org/10.3390/w16010021 - 20 Dec 2023
Cited by 2 | Viewed by 1365
Abstract
This paper is devoted to the study of the mesothermal temperature maximum layer (MTML) in Lake Baikal, which is observed during the period of winter stratification. On the one hand, this is a rather well-known phenomenon; on the other hand, it is not [...] Read more.
This paper is devoted to the study of the mesothermal temperature maximum layer (MTML) in Lake Baikal, which is observed during the period of winter stratification. On the one hand, this is a rather well-known phenomenon; on the other hand, it is not sufficiently studied, although it has a significant impact on the thermal regime in winter and water dynamics during the periods of formation and breakdown of inverse temperature stratification. Our work presents the results of analyzing the spatial and temporal variability of the main MTML parameters and their dependence on hydrometeorological factors. For this purpose, CTD soundings and mooring data obtained in the western part of the southern basin of Lake Baikal in 2000–2022 were analyzed in comparison to ERA5-Land reanalysis. The MTML parameters have noticeable within-season and interannual spatial and temporal variability. This is obviously related to the influence of the processes of vertical turbulent mixing, internal wave action, and current patterns. The analysis of interannual differences revealed four types of behavior of the maximum MTML temperature during the ice season. The influence of wind conditions on the main MTML parameters (maximum MTML temperature, depth of its occurrence, and depth of the upper MTML boundary) was shown not only in the fall, but also in the summer period, when heat accumulation in the Baikal water column takes place. With the increased wind activity in the late fall, the MTML is formed deeper and has lower maximum temperature values. At lower wind activity in the fall, the MTML is closer to the surface and the values of the maximum MTML temperature are higher. A change in wind activity in the summer leads to the opposite effect. In spite of the essential trends over the study period in the dates of the occurrence of hydrological events, no noticeable trends were registered for the maximum MTML temperature, its depth, and the depth of the upper boundary of the MTML. Full article
(This article belongs to the Special Issue Lake Processes and Lake’s Climate Effects under Global Warming)
Show Figures

Figure 1

14 pages, 987 KB  
Review
Neuropilin-1 and Integrins as Receptors for Chromogranin A-Derived Peptides
by Angelo Corti, Giulia Anderluzzi and Flavio Curnis
Pharmaceutics 2022, 14(12), 2555; https://doi.org/10.3390/pharmaceutics14122555 - 22 Nov 2022
Cited by 4 | Viewed by 2781
Abstract
Human chromogranin A (CgA), a 439 residue-long member of the “granin” secretory protein family, is the precursor of several peptides and polypeptides involved in the regulation of the innate immunity, cardiovascular system, metabolism, angiogenesis, tissue repair, and tumor growth. Despite the [...] Read more.
Human chromogranin A (CgA), a 439 residue-long member of the “granin” secretory protein family, is the precursor of several peptides and polypeptides involved in the regulation of the innate immunity, cardiovascular system, metabolism, angiogenesis, tissue repair, and tumor growth. Despite the many biological activities observed in experimental and preclinical models for CgA and its most investigated fragments (vasostatin-I and catestatin), limited information is available on the receptor mechanisms underlying these effects. The interaction of vasostatin-1 with membrane phospholipids and the binding of catestatin to nicotinic and b2-adrenergic receptors have been proposed as important mechanisms for some of their effects on the cardiovascular and sympathoadrenal systems. Recent studies have shown that neuropilin-1 and certain integrins may also work as high-affinity receptors for CgA, vasostatin-1 and other fragments. In this case, we review the results of these studies and discuss the structural requirements for the interactions of CgA-related peptides with neuropilin-1 and integrins, their biological effects, their mechanisms, and the potential exploitation of compounds that target these ligand-receptor systems for cancer diagnosis and therapy. The results obtained so far suggest that integrins (particularly the integrin avb6) and neuropilin-1 are important receptors that mediate relevant pathophysiological functions of CgA and CgA fragments in angiogenesis, wound healing, and tumor growth, and that these interactions may represent important targets for cancer imaging and therapy. Full article
Show Figures

Figure 1

11 pages, 1845 KB  
Review
Biochemistry of the Endocrine Heart
by Jens P. Goetze, Emil D. Bartels, Theodor W. Shalmi, Lilian Andraud-Dang and Jens F. Rehfeld
Biology 2022, 11(7), 971; https://doi.org/10.3390/biology11070971 - 27 Jun 2022
Cited by 2 | Viewed by 3182
Abstract
Production and release of natriuretic peptides and other vasoactive peptides are tightly regulated in mammalian physiology and involved in cardiovascular homeostasis. As endocrine cells, the cardiac myocytes seem to possess almost all known chemical necessities for translation, post-translational modifications, and complex peptide proteolysis. [...] Read more.
Production and release of natriuretic peptides and other vasoactive peptides are tightly regulated in mammalian physiology and involved in cardiovascular homeostasis. As endocrine cells, the cardiac myocytes seem to possess almost all known chemical necessities for translation, post-translational modifications, and complex peptide proteolysis. In several ways, intracellular granules in the cells contain not only peptides destined for secretion but also important granin molecules involved in maintaining a regulated secretory pathway. In this review, we will highlight the biochemical phenotype of the endocrine heart recapitulating that the cardiac myocytes are capable endocrine cells. Understanding the basal biochemistry of the endocrine heart in producing and secreting peptides to circulation could lead to new discoveries concerning known peptide products as well as hitherto unidentified cardiac peptide products. In perspective, studies on natriuretic peptides in the heart have shown that the post-translational phase of gene expression is not only relevant for human physiology but may prove implicated also in the development and, perhaps one day, cure of human cardiovascular disease. Full article
Show Figures

Figure 1

19 pages, 20377 KB  
Article
Autonomous System for Lake Ice Monitoring
by Ilya Aslamov, Georgiy Kirillin, Mikhail Makarov, Konstantin Kucher, Ruslan Gnatovsky and Nikolay Granin
Sensors 2021, 21(24), 8505; https://doi.org/10.3390/s21248505 - 20 Dec 2021
Cited by 8 | Viewed by 4510
Abstract
Continuous monitoring of ice cover belongs to the key tasks of modern climate research, providing up-to-date information on climate change in cold regions. While a strong advance in ice monitoring worldwide has been provided by the recent development of remote sensing methods, quantification [...] Read more.
Continuous monitoring of ice cover belongs to the key tasks of modern climate research, providing up-to-date information on climate change in cold regions. While a strong advance in ice monitoring worldwide has been provided by the recent development of remote sensing methods, quantification of seasonal ice cover is impossible without on-site autonomous measurements of the mass and heat budget. In the present study, we propose an autonomous monitoring system for continuous in situ measuring of vertical temperature distribution in the near-ice air, the ice strata and the under-ice water layer for several months with simultaneous records of solar radiation incoming at the lake surface and passing through the snow and ice covers as well as snow and ice thicknesses. The use of modern miniature analog and digital sensors made it possible to make a compact, energy efficient measurement system with high precision and spatial resolution and characterized by easy deployment and transportation. In particular, the high resolution of the ice thickness probe of 0.05 mm allows to resolve the fine-scale processes occurring in low-flow environments, such as freshwater lakes. Several systems were tested in numerous studies in Lake Baikal and demonstrated a high reliability in deriving the ice heat balance components during ice-covered periods. Full article
(This article belongs to the Special Issue Marine Sensors: Recent Advances and Challenges)
Show Figures

Figure 1

32 pages, 30880 KB  
Review
Inside the Insulin Secretory Granule
by Mark Germanos, Andy Gao, Matthew Taper, Belinda Yau and Melkam A. Kebede
Metabolites 2021, 11(8), 515; https://doi.org/10.3390/metabo11080515 - 5 Aug 2021
Cited by 36 | Viewed by 7913
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with [...] Read more.
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis. Full article
(This article belongs to the Special Issue Islet Biology and Metabolism)
Show Figures

Figure 1

17 pages, 866 KB  
Review
The Emerging Roles of Chromogranins and Derived Polypeptides in Atherosclerosis, Diabetes, and Coronary Heart Disease
by Takuya Watanabe
Int. J. Mol. Sci. 2021, 22(11), 6118; https://doi.org/10.3390/ijms22116118 - 6 Jun 2021
Cited by 25 | Viewed by 6998
Abstract
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic [...] Read more.
Chromogranin A (CgA), B (CgB), and C (CgC), the family members of the granin glycoproteins, are associated with diabetes. These proteins are abundantly expressed in neurons, endocrine, and neuroendocrine cells. They are also present in other areas of the body. Patients with diabetic retinopathy have higher levels of CgA, CgB, and CgC in the vitreous humor. In addition, type 1 diabetic patients have high CgA and low CgB levels in the circulating blood. Plasma CgA levels are increased in patients with hypertension, coronary heart disease, and heart failure. CgA is the precursor to several functional peptides, including catestatin, vasostatin-1, vasostatin-2, pancreastatin, chromofungin, and many others. Catestatin, vasostain-1, and vasostatin-2 suppress the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human vascular endothelial cells. Catestatin and vasostatin-1 suppress oxidized low-density lipoprotein-induced foam cell formation in human macrophages. Catestatin and vasostatin-2, but not vasostatin-1, suppress the proliferation and these three peptides suppress the migration in human vascular smooth muscles. Chronic infusion of catestatin, vasostatin-1, or vasostatin-2 suppresses the development of atherosclerosis of the aorta in apolipoprotein E-deficient mice. Catestatin, vasostatin-1, vasostatin-2, and chromofungin protect ischemia/reperfusion-induced myocardial dysfunction in rats. Since pancreastatin inhibits insulin secretion from pancreatic β-cells, and regulates glucose metabolism in liver and adipose tissues, pancreastatin inhibitor peptide-8 (PSTi8) improves insulin resistance and glucose homeostasis. Catestatin stimulates therapeutic angiogenesis in the mouse hind limb ischemia model. Gene therapy with secretoneurin, a CgC-derived peptide, stimulates postischemic neovascularization in apolipoprotein E-deficient mice and streptozotocin-induced diabetic mice, and improves diabetic neuropathy in db/db mice. Therefore, CgA is a biomarker for atherosclerosis, diabetes, hypertension, and coronary heart disease. CgA- and CgC--derived polypeptides provide the therapeutic target for atherosclerosis and ischemia-induced tissue damages. PSTi8 is useful in the treatment of diabetes. Full article
(This article belongs to the Special Issue Pathomechanisms of Atherosclerosis. Part III)
Show Figures

Figure 1

Back to TopTop