Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = golden buckwheat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3044 KiB  
Article
Effects of Eurotium cristatum Fermentation on Tartary Buckwheat Leaf Tea: Sensory Analysis, Volatile Compounds, Non-Volatile Profile and Antioxidant Activity
by Liangzhen Jiang, Xiao Han, Luo Wang, Haonan Zheng, Gen Ma, Xiao Wang, Yuanmou Tang, Xiaoqin Zheng, Changying Liu, Yan Wan and Dabing Xiang
Fermentation 2024, 10(7), 369; https://doi.org/10.3390/fermentation10070369 - 19 Jul 2024
Cited by 1 | Viewed by 1826
Abstract
Background: Eurotium cristatum (E. cristatum) is the probiotic fungus in Fu-brick tea, with which fermentation brings a unique flavor and taste and health-promoting effects. Tartary buckwheat leaves are rich in functional active substances such as flavonoids and phenolic compounds, yet are [...] Read more.
Background: Eurotium cristatum (E. cristatum) is the probiotic fungus in Fu-brick tea, with which fermentation brings a unique flavor and taste and health-promoting effects. Tartary buckwheat leaves are rich in functional active substances such as flavonoids and phenolic compounds, yet are not effectively utilized. Methods: Tartary buckwheat leaves were processed into raw green tea first and subsequently fermented with E. cristatum to develop a novel fermented leaf tea. The tea quality was evaluated by the aspects of the sensory scores by E-tongue, the volatile compounds by HS-SPME-GC-MS, the non-volatile profile by biochemical and UPLC-MS/MS methods and the antioxidant activity by the colorimetric assay. Results: Fermented leaf tea displayed a golden yellow color, a unique “flower” aroma and a dark-tea taste, with an improved sensory acceptability. Fermentation raised the content of volatile heterocyclic and aromatic compounds, alkenes and other aromatic components, which produced a unique floral flavor. The proportion of sour, bitter and astringency accounting non-volatile compounds such as phenolic acids and amino acids decreased, while the proportion of umami and sweet accounting substances such as responsible amino acids increased. Fermented leaf tea displayed a relative stronger total antioxidant activity against ABTS. Conclusion: E. cristatum fermentation exerted positive effects on Tartary buckwheat leaf tea quality. Full article
Show Figures

Figure 1

18 pages, 3673 KiB  
Article
Golden Buckwheat Extract–Loaded Injectable Hydrogel for Efficient Postsurgical Prevention of Local Tumor Recurrence Caused by Residual Tumor Cells
by Li Xie, Rong Liu, Dan Wang, Qingqing Pan, Shujie Yang, Huilun Li, Xinmu Zhang and Meng Jin
Molecules 2023, 28(14), 5447; https://doi.org/10.3390/molecules28145447 - 17 Jul 2023
Cited by 9 | Viewed by 2049
Abstract
To prevent local tumor recurrence caused by possible residual cancer cells after surgery, avoid toxicity of systemic chemotherapy and protect the fragile immune system of postsurgical patients, an increasing amount of attention has been paid to local anti–cancer drug delivery systems. In this [...] Read more.
To prevent local tumor recurrence caused by possible residual cancer cells after surgery, avoid toxicity of systemic chemotherapy and protect the fragile immune system of postsurgical patients, an increasing amount of attention has been paid to local anti–cancer drug delivery systems. In this paper, golden buckwheat was first applied to prevent post–operative tumor recurrence, which is a Chinese herb and possesses anti–tumor activity. Golden buckwheat extract–loaded gellan gum injectable hydrogels were fabricated via Ca2+ crosslinking for localized chemotherapy. Blank and/or drug–loaded hydrogels were characterized via FT–IR, TG, SEM, density functional theory, drug release and rheology studies to explore the interaction among gellan gum, Ca2+ and golden buckwheat extract (GBE). Blank hydrogels were non–toxic to NIH3T3 cells. Of significance, GBE and GBE–loaded hydrogel inhibited the proliferation of tumor cells (up to 90% inhibition rate in HepG2 cells). In vitro hemolysis assay showed that blank hydrogel and GBE–loaded hydrogel had good blood compatibility. When GBE–loaded hydrogel was applied to the incompletely resected tumor of mice bearing B16 tumor xenografts, it showed inhibition of tumor growth in vivo and induced the apoptosis of tumor cells. Taken together, gellan gum injectable hydrogel containing GBE is a potential local anticancer drug delivery system for the prevention of postsurgical tumor recurrence. Full article
Show Figures

Figure 1

10 pages, 467 KiB  
Article
Construction and Application of Detection Model for Leucine and Tyrosine Content in Golden Tartary Buckwheat Based on Near Infrared Spectroscopy
by Liwei Zhu, Rebecca Njeri Damaris, Yong Lv, Qianxi Du, Taoxiong Shi, Jiao Deng and Qingfu Chen
Appl. Sci. 2022, 12(21), 11051; https://doi.org/10.3390/app122111051 - 31 Oct 2022
Cited by 1 | Viewed by 1897
Abstract
To meet the demand of the breeding and processing industry of Golden Tartary buckwheat, quantitative identification models were established to test the content of leucine (Leu) and tyrosine (Tyr) in Golden Tartary buckwheat leaves by near-infrared reflectance spectroscopy (NIRS) with quantitative partial least [...] Read more.
To meet the demand of the breeding and processing industry of Golden Tartary buckwheat, quantitative identification models were established to test the content of leucine (Leu) and tyrosine (Tyr) in Golden Tartary buckwheat leaves by near-infrared reflectance spectroscopy (NIRS) with quantitative partial least squares (PLS). Leu’s modeling results were as follows: first derivative (11) pretreatment, the wavenumber range of 4000–9000 cm−1 was appropriate for modeling (calibration sets: validation set = 6:1), the mean coefficient of determination (R2), standard error of calibration (SEC), and relative standard deviation (RSD) for the calibration set were 0.9229, 0.45, and 3.45%, respectively; for the validation set, the mean R2, SEC, and RSD were 0.9502, 0.47, and 3.65%, respectively. Tyr modeling results were as follows: first derivative (11) pretreatment, the wavenumber range of 4000–10,000 cm−1 was suitable for modeling (calibration sets: validation set = 4:1), the R2, SEC, and RSD for the calibration set was 0.9016, 0.15, and 5.72%, respectively; for the validation set, the mean R2, SEC, and RSD were 0.9012, 0.15, and 5.53%, respectively. It was proved that the Leu and Tyr content of Golden Tartary buckwheat could be quantified using the model structured by near infrared spectroscopy combined with the partial least squares method. Full article
(This article belongs to the Special Issue Spectral Detection: Technologies and Applications)
Show Figures

Figure 1

14 pages, 1167 KiB  
Article
Lupin Seed Protein Extract Can Efficiently Enrich the Physical Properties of Cookies Prepared with Alternative Flours
by Joana Mota, Ana Lima, Ricardo B. Ferreira and Anabela Raymundo
Foods 2020, 9(8), 1064; https://doi.org/10.3390/foods9081064 - 5 Aug 2020
Cited by 20 | Viewed by 5533
Abstract
Legume proteins can be successfully used in bakery foods, like cookies, to obtain a protein-enriched product. A lupin extract (10 g/100 g) was added to gluten and gluten-free flours from different sources: rice, buckwheat, oat, kamut and spelt. The impact on the physical [...] Read more.
Legume proteins can be successfully used in bakery foods, like cookies, to obtain a protein-enriched product. A lupin extract (10 g/100 g) was added to gluten and gluten-free flours from different sources: rice, buckwheat, oat, kamut and spelt. The impact on the physical properties of the dough and cookies was evaluated for the different systems. Rice and buckwheat doughs were 20% firmer and 40% less cohesive than the others. The incorporation of lupin extract had a reduced impact on the shape parameters of the cookies, namely in terms of area and thickness. The texture differed over time and after eight weeks, the oat and buckwheat cookies enriched with lupin extract were significantly firmer than the cookies without lupin. The incorporation of lupin extract induced a certain golden-brown coloring on the cookies, making them more appealing: lightness (L*) values decreased, generally, for the cookies with lupin extract when compared to the controls. The aw and moisture content values were very low for all samples, suggesting a high stability food product. Hence, the addition of lupin extract brought some technological changes in the dough and cookies in all the flours tested but improved the final product quality which aligns with the trends in the food industry. Full article
(This article belongs to the Special Issue Applications of Natural Products in Foods)
Show Figures

Graphical abstract

17 pages, 5527 KiB  
Article
Recent Progress in Perennial Buckwheat Development
by Qing-Fu Chen, Xiao-Yan Huang, Hong-You Li, Li-Juan Yang and Ya-Song Cui
Sustainability 2018, 10(2), 536; https://doi.org/10.3390/su10020536 - 17 Feb 2018
Cited by 29 | Viewed by 9307
Abstract
Grains in the genus Fagopyrum have benefits to human health and are an excellent gluten-free raw material. Of all cereal foods, this genus has the highest total content of amino-acid nutrients necessary for humans; nutrients that are resistant to digestion (protein and starch) [...] Read more.
Grains in the genus Fagopyrum have benefits to human health and are an excellent gluten-free raw material. Of all cereal foods, this genus has the highest total content of amino-acid nutrients necessary for humans; nutrients that are resistant to digestion (protein and starch) resulting in their sustained release; higher dietary fiber content than key cereals, and is rich in a special healthy ingredient (flavonoids). Fagopyrum includes 24 species of which five are perennial. Among them, golden buckwheat (F.cymosum complex) is the most important perennial buckwheat, which is not only used in Chinese medicine, but also has great potential in healthy food crop. In order to provide some clues for perennial crop studies and their industry development, this paper presents the state of perennial buckwheat research in terms of taxonomy; natural chemical products and pharmacological and health functions; genetics and evolution; breeding; and product development and utilization. The great advances such as successful interspecific crossing and its subsequent new perennial buckwheat varieties will speed up the development of the perennial buckwheat industry. Full article
(This article belongs to the Special Issue Strategies, Advances and Challenges of Breeding Perennial Grain Crops)
Show Figures

Figure 1

Back to TopTop