Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = glutaminergic neurons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4534 KB  
Article
Comparative Analysis of Two Autophagy-Enhancing Small Molecules (AUTEN-67 and -99) in a Drosophila Model of Spinocerebellar Ataxia Type 1
by Tímea Burján, Maryam Aslam, Fanni Keresztes, Tímea Sigmond, Viktor A. Billes, Norbert Bencsik, Katalin Schlett, Tibor Vellai and Tibor Kovács
Int. J. Mol. Sci. 2025, 26(21), 10443; https://doi.org/10.3390/ijms262110443 - 27 Oct 2025
Viewed by 740
Abstract
Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells which is critical for the elimination of cellular damage. Its capacity progressively declines with age, and this change can lead to the development of various neurodegenerative pathologies including Spinocerebellar ataxia type 1 (SCA1). SCA1 [...] Read more.
Autophagy is a lysosome-mediated self-degradation process of eukaryotic cells which is critical for the elimination of cellular damage. Its capacity progressively declines with age, and this change can lead to the development of various neurodegenerative pathologies including Spinocerebellar ataxia type 1 (SCA1). SCA1 is mainly caused by mutations in the polyglutamine region of Ataxin 1 protein. In patients affected by the disease, Purkinje neurons of the cerebellum frequently undergo demise and eventually become lost. Here we tested whether two well-characterized autophagy-enhancing small molecules, AUTEN-67 and -99, which antagonize the autophagy complex Vps34 through blocking the myotubularin-related lipid phosphatase MTMR14/EDTP, have the capacity to ameliorate SCA1 symptoms. We found that in a Drosophila model of SCA1, only AUTEN-67 exerts positive effects including improvement in climbing ability and extending life span. Based on these results, we hypothesized that the two compounds influence autophagy in the brain in a neuron-specific manner. Indeed, according to data we obtained, AUTEN-67 and -99 exhibit shared and unique functional domains in the Drosophila brain. AUTENs enhance autophagy in GABAergic and dopaminergic neurons. In addition, AUTEN-67 also affect autophagy in cholinergic neurons, while AUTEN-99 trigger the process in glutaminergic neurons and motoneurons. We also observed varying efficiencies between the two AUTENs among different subtypes of cultured hippocampal neurons of mice. These data suggest that the two compounds display neuron-specific differences in exerting autophagy-enhancing effects, and may lead to a better understanding of which types of neurons autophagy could potentially be activated to treat SCA1 in human patients. Full article
Show Figures

Figure 1

17 pages, 8110 KB  
Article
Sodium Leak Channel in Glutamatergic Neurons of the Lateral Parabrachial Nucleus Modulates Inflammatory Pain in Mice
by Lin Wu, Yujie Wu, Jin Liu, Jingyao Jiang, Cheng Zhou and Donghang Zhang
Int. J. Mol. Sci. 2023, 24(15), 11907; https://doi.org/10.3390/ijms241511907 - 25 Jul 2023
Cited by 9 | Viewed by 2651
Abstract
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal [...] Read more.
Elevated excitability of glutamatergic neurons in the lateral parabrachial nucleus (PBL) is associated with the pathogenesis of inflammatory pain, but the underlying molecular mechanisms are not fully understood. Sodium leak channel (NALCN) is widely expressed in the central nervous system and regulates neuronal excitability. In this study, chemogenetic manipulation was used to explore the association between the activity of PBL glutamatergic neurons and pain thresholds. Complete Freund’s adjuvant (CFA) was used to construct an inflammatory pain model in mice. Pain behaviour was tested using von Frey filaments and Hargreaves tests. Local field potential (LFP) was used to record the activity of PBL glutamatergic neurons. Gene knockdown techniques were used to investigate the role of NALCN in inflammatory pain. We further explored the downstream projections of PBL using cis-trans-synaptic tracer virus. The results showed that chemogenetic inhibition of PBL glutamatergic neurons increased pain thresholds in mice, whereas chemogenetic activation produced the opposite results. CFA plantar modelling increased the number of C-Fos protein and NALCN expression in PBL glutamatergic neurons. Knockdown of NALCN in PBL glutamatergic neurons alleviated CFA-induced pain. CFA injection induced C-Fos protein expression in central nucleus amygdala (CeA) neurons, which was suppressed by NALCN knockdown in PBL glutamatergic neurons. Therefore, elevated expression of NALCN in PBL glutamatergic neurons contributes to the development of inflammatory pain via PBL-CeA projections. Full article
(This article belongs to the Special Issue Mechanisms of Neurotoxicity)
Show Figures

Figure 1

18 pages, 5268 KB  
Article
NLRP3-Mediated Piezo1 Upregulation in ACC Inhibitory Parvalbumin-Expressing Interneurons Is Involved in Pain Processing after Peripheral Nerve Injury
by Qiao-Yun Li, Yi-Wen Duan, Yao-Hui Zhou, Shao-Xia Chen, Yong-Yong Li and Ying Zang
Int. J. Mol. Sci. 2022, 23(21), 13035; https://doi.org/10.3390/ijms232113035 - 27 Oct 2022
Cited by 29 | Viewed by 5110
Abstract
The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain [...] Read more.
The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain information in the peripheral nervous system. However, the pain-processing role of Piezo1 in the brain is unknown. In this work, we found that spared (sciatic) nerve injury (SNI) increased Piezo1 protein levels in inhibitory parvalbumin (PV)-expressing interneurons (PV-INs) but not in glutaminergic CaMKⅡ+ neurons, in the bilateral ACC. A reduction in the number of PV-INs but not in the number of CaMKⅡ+ neurons and a significant reduction in inhibitory synaptic terminals was observed in the SNI chronic pain model. Further, observation of morphological changes in the microglia in the ACC showed their activated amoeba-like transformation, with a reduction in process length and an increase in cell body area. Combined with the encapsulation of Piezo1-positive neurons by Iba1+ microglia, the loss of PV-INs after SNI might result from phagocytosis by the microglia. In cellular experiments, administration of recombinant rat TNF-α (rrTNF) to the BV2 cell culture or ACC neuron primary culture elevated the protein levels of Piezo1 and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3). The administration of the NLRP3 inhibitor MCC950 in these cells blocked the rrTNF-induced expression of caspase-1 and interleukin-1β (key downstream factors of the activated NLRP3 inflammasome) in vitro and reversed the SNI-induced Piezo1 overexpression in the ACC and alleviated SNI-induced allodynia in vivo. These results suggest that NLRP3 may be the key factor in causing Piezo1 upregulation in SNI, promoting an imbalance between ACC excitation and inhibition by inducing the microglial phagocytosis of PV-INs and, thereby, facilitating spinal pain transmission. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

16 pages, 6343 KB  
Article
Generation of a Pure Culture of Neuron-like Cells with a Glutamatergic Phenotype from Mouse Astrocytes
by Gary Stanley Fernandes, Rishabh Deo Singh and Kyeong Kyu Kim
Biomedicines 2022, 10(4), 928; https://doi.org/10.3390/biomedicines10040928 - 18 Apr 2022
Cited by 11 | Viewed by 4456
Abstract
Astrocyte-to-neuron reprogramming is a promising therapeutic approach for treatment of neurodegenerative diseases. The use of small molecules as an alternative to the virus-mediated ectopic expression of lineage-specific transcription factors negates the tumorigenic risk associated with viral genetic manipulation and uncontrolled differentiation of stem [...] Read more.
Astrocyte-to-neuron reprogramming is a promising therapeutic approach for treatment of neurodegenerative diseases. The use of small molecules as an alternative to the virus-mediated ectopic expression of lineage-specific transcription factors negates the tumorigenic risk associated with viral genetic manipulation and uncontrolled differentiation of stem cells. However, because previously developed methods for small-molecule reprogramming of astrocytes to neurons are multistep, complex, and lengthy, their applications in biomedicine, including clinical treatment, are limited. Therefore, our objective in this study was to develop a novel chemical-based approach to the cellular reprogramming of astrocytes into neurons with high efficiency and low complexity. To accomplish that, we used C8-D1a, a mouse astrocyte cell line, to assess the role of small molecules in reprogramming protocols that otherwise suffer from inconsistencies caused by variations in donor of the primary cell. We developed a new protocol by which a chemical mixture formulated with Y26732, DAPT, RepSox, CHIR99021, ruxolitinib, and SAG rapidly and efficiently induced the neural reprogramming of astrocytes in four days, with a conversion efficiency of 82 ± 6%. Upon exposure to the maturation medium, those reprogrammed cells acquired a glutaminergic phenotype over the next eleven days. We also demonstrated the neuronal functionality of the induced cells by confirming KCL-induced calcium flux. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

15 pages, 1450 KB  
Article
Migraine and Its Association with Hyperactivity of Cell Membranes in the Course of Latent Magnesium Deficiency—Preliminary Study of the Importance of the Latent Tetany Presence in the Migraine Pathogenesis
by Joanna Cegielska, Elżbieta Szmidt-Sałkowska, Wojciech Domitrz, Małgorzata Gaweł, Maria Radziwoń-Zaleska and Izabela Domitrz
Nutrients 2021, 13(8), 2701; https://doi.org/10.3390/nu13082701 - 5 Aug 2021
Cited by 9 | Viewed by 4843
Abstract
So far, there is no consistent and convincing theory explaining the pathogenesis of migraines. Vascular disorders, the effect of oxidative stress on neurons, and the contribution of magnesium-calcium deficiencies in triggering cortical depression and abnormal glutaminergic neurotransmission are taken into account. However, there [...] Read more.
So far, there is no consistent and convincing theory explaining the pathogenesis of migraines. Vascular disorders, the effect of oxidative stress on neurons, and the contribution of magnesium-calcium deficiencies in triggering cortical depression and abnormal glutaminergic neurotransmission are taken into account. However, there are no reliable publications confirming the role of dietary deficits of magnesium and latent tetany as factors triggering migraine attacks. The aim of the study was to evaluate the influence of latent magnesium deficiency assessed with the electrophysiological tetany test on the course of migraine. The study included: a group of 35 patients (29 women and six men; in mean age 41 years) with migraine and a control group of 24 (17 women and seven men; in mean age 39 years) healthy volunteers. Migraine diagnosis was based on the International Headache Society criteria, 3rd edition. All patients and controls after full general and neurological examination were subjected to a standard electrophysiological ischemic tetany test. Moreover, the level of magnesium in blood serum was tested and was in the normal range in all patients. Then, the incidence of a positive tetany EMG test results in the migraine group and the results in the subgroups with and without aura were compared to the results in the control group. Moreover, the relationship between clinical markers of spasmophilia and the results of the tetany test was investigated in the migraine group. As well as the relationship between migraine frequency and tetany test results. There was no statistically significant difference in the occurrence of the electrophysiological exponent of spasmophilia between the migraine and control group. Neither correlation between the occurrence of clinical symptoms nor the frequency of migraine attacks and the results of the tetany test was stated (p > 0.05). However, there was an apparent statistical difference between the subgroup of migraine patients with aura in relation to the control group (p < 0.05). The result raises hope to find a trigger for migraine attacks of this clinical form, the more that this factor may turn out to be easy to supplement with dietary supplementation. Full article
Show Figures

Figure 1

21 pages, 672 KB  
Review
Vitamin C Status and Cognitive Function: A Systematic Review
by Nikolaj Travica, Karin Ried, Avni Sali, Andrew Scholey, Irene Hudson and Andrew Pipingas
Nutrients 2017, 9(9), 960; https://doi.org/10.3390/nu9090960 - 30 Aug 2017
Cited by 141 | Viewed by 25764
Abstract
Vitamin C plays a role in neuronal differentiation, maturation, myelin formation and modulation of the cholinergic, catecholinergic, and glutaminergic systems. This review evaluates the link between vitamin C status and cognitive performance, in both cognitively intact and impaired individuals. We searched the PUBMED, [...] Read more.
Vitamin C plays a role in neuronal differentiation, maturation, myelin formation and modulation of the cholinergic, catecholinergic, and glutaminergic systems. This review evaluates the link between vitamin C status and cognitive performance, in both cognitively intact and impaired individuals. We searched the PUBMED, SCOPUS, SciSearch and the Cochrane Library from 1980 to January 2017, finding 50 studies, with randomised controlled trials (RCTs, n = 5), prospective (n = 24), cross-sectional (n = 17) and case-control (n = 4) studies. Of these, 36 studies were conducted in healthy participants and 14 on cognitively impaired individuals (including Alzheimer’s and dementia). Vitamin C status was measured using food frequency questionnaires or plasma vitamin C. Cognition was assessed using a variety of tests, mostly the Mini-Mental-State-Examination (MMSE). In summary, studies demonstrated higher mean vitamin C concentrations in the cognitively intact groups of participants compared to cognitively impaired groups. No correlation between vitamin C concentrations and MMSE cognitive function was apparent in the cognitively impaired individuals. The MMSE was not suitable to detect a variance in cognition in the healthy group. Analysis of the studies that used a variety of cognitive assessments in the cognitively intact was beyond the scope of this review; however, qualitative assessment revealed a potential association between plasma vitamin C concentrations and cognition. Due to a number of limitations in these studies, further research is needed, utilizing plasma vitamin C concentrations and sensitive cognitive assessments that are suitable for cognitively intact adults. Full article
(This article belongs to the Special Issue Vitamin C in Health and Disease)
Show Figures

Figure 1

Back to TopTop