Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = gigapixel photography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11500 KB  
Article
Exploiting the Potential of Overlapping Cropping for Real-World Pedestrian and Vehicle Detection with Gigapixel-Level Images
by Chunlei Wang, Wenquan Feng, Binghao Liu, Xinyang Ling and Yifan Yang
Appl. Sci. 2023, 13(6), 3637; https://doi.org/10.3390/app13063637 - 13 Mar 2023
Cited by 5 | Viewed by 3136
Abstract
Pedestrian and vehicle detection is widely used in intelligent assisted driving, pedestrian counting, drone aerial photography, and other applications. Recently, with the development of gigacameras, gigapixel-level images have emerged. The large field of view and high resolution provide global and local information, which [...] Read more.
Pedestrian and vehicle detection is widely used in intelligent assisted driving, pedestrian counting, drone aerial photography, and other applications. Recently, with the development of gigacameras, gigapixel-level images have emerged. The large field of view and high resolution provide global and local information, which enables object detection in real-world scenarios. Although existing pedestrian and vehicle detection algorithms have achieved remarkable success for standard images, their methods are not suitable for ultra-high-resolution images. In order to improve the performance of existing pedestrian and vehicle detectors in real-world scenarios, we used a sliding window to crop the original images to solve this problem. When fusing the sub-images, we proposed a midline method to reduce the cropped objects that NMS could not eliminate. At the same time, we used varifocal loss to solve the imbalance between positive and negative samples caused by the high resolution. We also found that pedestrians and vehicles were separable in size and comprised more than one target type. As a result, we improved the detector performance with single-class object detection for pedestrians and vehicles, respectively. At the same time, we provided many useful strategies to improve the detector. The experimental results demonstrated that our method could improve the performance of real-world pedestrian and vehicle detection. Full article
(This article belongs to the Special Issue Intelligent Analysis and Image Recognition)
Show Figures

Figure 1

20 pages, 10112 KB  
Article
Documenting Paintings with Gigapixel Photography
by Pedro M. Cabezos-Bernal, Pablo Rodriguez-Navarro and Teresa Gil-Piqueras
J. Imaging 2021, 7(8), 156; https://doi.org/10.3390/jimaging7080156 - 21 Aug 2021
Cited by 16 | Viewed by 4680
Abstract
Digital photographic capture of pictorial artworks with gigapixel resolution (around 1000 megapixels or greater) is a novel technique that is beginning to be used by some important international museums as a means of documentation, analysis, and dissemination of their masterpieces. This line of [...] Read more.
Digital photographic capture of pictorial artworks with gigapixel resolution (around 1000 megapixels or greater) is a novel technique that is beginning to be used by some important international museums as a means of documentation, analysis, and dissemination of their masterpieces. This line of research is extremely interesting, not only for art curators and scholars but also for the general public. The results can be disseminated through online virtual museum displays, offering a detailed interactive visualization. These virtual visualizations allow the viewer to delve into the artwork in such a way that it is possible to zoom in and observe those details, which would be negligible to the naked eye in a real visit. Therefore, this kind of virtual visualization using gigapixel images has become an essential tool to enhance cultural heritage and to make it accessible to everyone. Since today’s professional digital cameras provide images of around 40 megapixels, obtaining gigapixel images requires some special capture and editing techniques. This article describes a series of photographic methodologies and equipment, developed by the team of researchers, that have been put into practice to achieve a very high level of detail and chromatic fidelity, in the documentation and dissemination of pictorial artworks. The result of this research work consisted in the gigapixel documentation of several masterpieces of the Museo de Bellas Artes of Valencia, one of the main art galleries in Spain. The results will be disseminated through the Internet, as will be shown with some examples. Full article
Show Figures

Figure 1

10 pages, 5118 KB  
Article
The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain
by Saverio Romeo, Lucio Di Matteo, Daniel Scott Kieffer, Grazia Tosi, Aurelio Stoppini and Fabio Radicioni
Geosciences 2019, 9(2), 99; https://doi.org/10.3390/geosciences9020099 - 21 Feb 2019
Cited by 16 | Viewed by 5097
Abstract
The work in this paper illustrates an experimental application for geosciences by coupling new and low cost photogrammetric techniques: Gigapixel and Structure-from-Motion (SfM). Gigapixel photography is a digital image composed of billions of pixels (≥1000 megapixels) obtained from a conventional Digital single-lens reflex [...] Read more.
The work in this paper illustrates an experimental application for geosciences by coupling new and low cost photogrammetric techniques: Gigapixel and Structure-from-Motion (SfM). Gigapixel photography is a digital image composed of billions of pixels (≥1000 megapixels) obtained from a conventional Digital single-lens reflex camera (DSLR), whereas the SfM technique obtains three-dimensional (3D) information from two-dimensional (2D) image sequences. The field test was carried out at the Ingelsberg slope (Bad Hofgastein, Austria), which hosts one of the most dangerous landslides in the Salzburg Land. The stereographic analysis carried out on the preliminary 3D model, integrated with Ground Based Synthetic Aperture Radar Interferometry (GBInSAR) data, allowed us to obtain the main fractures and discontinuities of the unstable rock mass. Full article
(This article belongs to the Special Issue Mountain Landslides: Monitoring, Modeling, and Mitigation)
Show Figures

Graphical abstract

16 pages, 13402 KB  
Article
Gigapixel Imaging and Photogrammetry: Development of a New Long Range Remote Imaging Technique
by Matthew J. Lato, George Bevan and Michael Fergusson
Remote Sens. 2012, 4(10), 3006-3021; https://doi.org/10.3390/rs4103006 - 10 Oct 2012
Cited by 31 | Viewed by 11275
Abstract
The use of terrestrial remote imaging techniques, specifically LiDAR (Light Detection And Ranging) and digital stereo-photogrammetry, are widely proven and accepted for the mapping of geological structure and monitoring of mass movements. The use of such technologies can be limited, however: LiDAR generally [...] Read more.
The use of terrestrial remote imaging techniques, specifically LiDAR (Light Detection And Ranging) and digital stereo-photogrammetry, are widely proven and accepted for the mapping of geological structure and monitoring of mass movements. The use of such technologies can be limited, however: LiDAR generally by the cost of acquisition, and stereo-photogrammetry by the tradeoff between possible resolution within the scene versus the spatial extent of the coverage. The objective of this research is to test a hybrid gigapixel photogrammetry method, and investigate optimal equipment configurations for use in mountainous terrain. The scope of the work included field testing at variable ranges, angles, resolutions, and in variable geological and climatologically settings. Original field work was carried out in Canada to test various lenses and cameras, and detailed field mapping excursions were conducted in Norway. The key findings of the research are example data generated by gigapixel photogrammetry, a detailed discussion on optimal photography equipment for gigapixel imaging, and implementations of the imaging possibilities for rockfall mapping. This paper represents a discussion about a new terrestrial 3-dimensional imaging technique. The findings of this research will directly benefit natural hazard mapping programs in which rockfall potential must be recorded and the use of standard 3-dimensional imaging techniques cannot be applied. Full article
Show Figures

Back to TopTop