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Abstract: The use of terrestrial remote imaging techniques, specifically LiDAR (Light 
Detection And Ranging) and digital stereo-photogrammetry, are widely proven and 
accepted for the mapping of geological structure and monitoring of mass movements. The 
use of such technologies can be limited, however: LiDAR generally by the cost of 
acquisition, and stereo-photogrammetry by the tradeoff between possible resolution within 
the scene versus the spatial extent of the coverage. The objective of this research is to test a 
hybrid gigapixel photogrammetry method, and investigate optimal equipment 
configurations for use in mountainous terrain. The scope of the work included field testing 
at variable ranges, angles, resolutions, and in variable geological and climatologically 
settings. Original field work was carried out in Canada to test various lenses and cameras, 
and detailed field mapping excursions were conducted in Norway. The key findings of the 
research are example data generated by gigapixel photogrammetry, a detailed discussion on 
optimal photography equipment for gigapixel imaging, and implementations of the 
imaging possibilities for rockfall mapping. This paper represents a discussion about a new 
terrestrial 3-dimensional imaging technique. The findings of this research will directly 
benefit natural hazard mapping programs in which rockfall potential must be recorded and 
the use of standard 3-dimensional imaging techniques cannot be applied.  

Keywords: imaging technology; rockfall; hazard mapping; photogrammetry; gigapixel 
imaging; rockmass characterization 
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1. Introduction 

Mapping and monitoring of natural and man-made slopes is an extremely diverse and challenging 
field. As of the 2000s, a philosophical shift has occurred within the community to embrace advanced 
high resolution 3-dimensional (3D) digital imaging techniques. The primary applications of remote 
imaging tools are to enable engineers to better understand the dynamics of the mass movements, to 
facilitate the assessment of the hazard, and to assess the degree of instability through the detection of 
surface changes. This enables the development of accurate early warning systems and precautionary 
measures. The two most commonly employed and practiced imaging tools, and most published in the 
academic literature, are Light Detection and Ranging (LiDAR) and stereo-photogrammetry. The 
published literature is immense; common topics are hardware advances, algorithm developments, the 
optimization of processing workflows, and innovative applications of the data [1–3]. 

Remote imaging techniques have a distinct advantage over observational approaches for mapping 
and monitoring of landslides and rockfall. As data is collected at specific points in time, in a true 3D 
space, comparison of data over time can enable the calculation of rockfall rate, pre-failure deformation, 
and mechanics of the movement. The principle use of the equipment is the ability to generate data 
depicting a specific site, at a specific point in time.  

LiDAR and digital stereo-photogrammetry are accepted techniques because they are easily 
understood, the results are visual, data are accurate, the equipment is reliable, and the processing 
options are diverse. There are, however, drawbacks to these imaging tools for long term detailed 
monitoring programs, which are explained in detail in the following sections.  

The research presented in this paper outlines the development of a hybrid digital photogrammetic 
technique that eliminates the traditionally accepted tradeoff between spatial coverage and resolution of 
traditional stereo-photogrammetry. By collecting gigapixel photographic images, not standard 
megapixel images, the generation of extremely high resolution 3D surface models is possible using 
standard photography equipment. This paper will discuss the development of gigapixel 
photogrammetry, illustrate example data, and address the implications for geological mapping, 
structural evaluation, and landslide/rockfall hazard mapping. As this field of study is novel, this paper 
is presented only as an initial foray on the capabilities of a new approach to digital  
stereo-photogrammetry using gigapixel imagery. All data used in this paper will be made publicly 
available through the website www.rockbench.org [4] as a way to aid in the development of this 
technique and testing its accuracy. 

2. Digital Photogrammetry 

The fundamentals of gigapixel photogrammetry lie within the understanding of traditional  
stereo-pair photogrammetry. As such, the following sections outline the basic principles of traditional 
photogrammetry and how this knowledge is applied to the development of data acquisition and 
processing techniques for gigapixel photogrammetry. 
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2.2. Gigapixel Photography 

Gigapixel images are images of a resolution equal to or greater than 1,000 megapixels, a number 
that vastly exceeds commercially-available single-sensor cameras. There are two commercially viable 
ways to capture gigapixel images today, one of which is to use a robotic head developed by GigaPan, 
while the other is to use a manual pano-gimbal head. The GigaPan unit was developed through the 
Global Connection Project to create a commercial front-end to the powerful NASA Vision Workbench 
C++ library [11]. The robotic GigaPan head (Figure 2) automates what is otherwise the time 
consuming and tedious process of capturing the hundreds of images required for a high-resolution, 
long-range fan project. 

Figure 2. Giagapan Epic Pro set up with D7000 and 300 mm f4. Note that the no-parallax 
point (NPP) is behind the sensor plane. 

 

Proper stitching of gigapixel images requires the camera and lens combination to rotate around the 
no-parallax point (NPP), which corresponds to the entrance pupil of the lens (the term “nodal point” 
has now been deprecated, and the term no-parallax point is preferred since there are multiple nodal 
points along a lens) [13]. Rotation around this point eliminates the effect of parallax, which is the 
movement of two distant objects relative to one another when viewed from different angles. The need 
to rotate the camera around this point necessitates the use of such specialized tripod heads. The 
GigaPan EPIC Pro is ideal for ease and speed of use, but with long telephoto lenses the no-parallax 
point can be located behind the sensor plane. This is an issue for the motors in the robotic head, which 
do not have enough torque to manipulate heavy lenses extended forward to their no-parallax point. The 
longest lens we have successfully mounted on the GigaPan at its no-parallax point is the 300 mm f4 
AF on a Nikon D7000, as illustrated in Figure 2. 

The GigaPan Stitch software, which automated the reconstruction of the 2D gigapixel image, is the 
result of a research collaboration between the NASA Ames Intelligent Robotics Group and Carnegie 
Mellon University with Google sponsorship to develop a high-resolution imaging technique and 
interactive viewing solution for use on the Mars Rovers. 

GigaPan images are viewed as standalone, high-resolution landscape images, which are extremely 
useful for geomorphological mapping, as illustrated in Figure 3. This technique is commonly used by 
the authors as a documentation and evaluation tool for the identification of high mountain hazards and 
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and a specialized robotic or manual head. There are a number of factors that influence camera and lens 
selection in gigapixel imaging, chief among them is sensor size and focal length. There are pros and 
cons for using a full frame sensor versus a cropped sensor. For one, a full frame sensor will capture the 
highest quality images in terms of dynamic range, resolution and low noise. As imaging technology 
moves forward, however, cropped sensor cameras are increasing in quality, and, because they 
inherently increase the focal length of the lens, can be very useful for long range work. Most consumer 
DSLR cameras have cropped sensors (crop factors of 1.5× on Nikon, and 1.6× on Canon), are 
relatively inexpensive, and have excellent image quality. Even smaller cameras with interchangeable 
lens mounts have become available in the last few years with crop factors of 2× (Micro 4/3) and 
2.7× (Nikon V1 and J1), which allow for more affordable telephoto lenses to be used to greater effect 
at long ranges. For instance, a 600 mm lens with a 2× teleconverter on a Nikon V1 has an effective 
focal length of 3,240 mm. 

Lens selection for gigapixel image capture depends on the required resolution of the final result. 
One can use lenses as wide as 105 mm and achieve a good result, however the longer the focal length, 
the greater the pixel/ground resolution. Prime (fixed focal length) lenses are preferred, because zoom 
lenses have more moving parts and thus leave more room for error. Longer telephoto lenses can create 
an issue when used in conjunction with a robotic GigaPan unit. They are inherently long and heavy 
and because the GigaPan EPIC Pro is a commercial unit, it is not robust enough to handle payloads 
much larger than 2 kg; we were able to support a Nikon D7000 (780 g) with a 300 mm f4 AF (1,330 g). 
The next longer focal length, 400 mm, is in another weight class entirely, with the newest Nikon 
400 mm f2.8 weighing 4.4 kg, which requires the use of a more robust, manual pano-gimbal head. 
Another issue with long telephoto lenses is locating the no-parallax point, which can be located behind 
the sensor plane. This makes mounting it on a GigaPan head unfeasible. For gigapixel setups with 
lenses longer than 300 mm, a heavy duty manual pano-gimbal head is required to manage the weight. 
However, rotation around the no-parallax point is impossible with this set-up because of the weight 
distribution, as illustrated in Figure 4. This causes errors in stitching gigapixel images, but can still be 
modelled in ADAMTech.  

Figure 4. Manual Pano-Gimbal head with 400 mm and 2× teleconverter on D7000: 
effective focal length of 1,200 mm. 
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The general rule for sharp imagery is to shoot with a shutter speed no slower than the focal length 
of the lens, i.e., 1/200 s at 200 mm, but a faster shutter speed is always ideal. Telephoto lenses have 
very shallow depth of field, and in order to capture consistently sharp images of a highly irregular rock 
cut, more depth of field is needed. All lenses have an ideal aperture setting before diffraction reduces 
image quality. Diffraction is the effect of light waves being compressed by the diaphragm of the 
aperture resulting in lower resolution. With an ideal aperture selected for a particular shooting 
situation, the shutter speed needed for a good exposure may be too slow to yield a sharp image. In 
order to increase shutter speed, ISO (the sensitivity of the image sensor) must also be increased. The 
native ISO of a camera will yield the highest quality images (100 ISO on Canon, 200 ISO on Nikon), 
however in order to use a shutter speed that will allow the capture of a sharp image, ISO may need to 
be increased to a point where noise becomes an issue. Use of a modern, high quality DSLR is 
important for low noise at high ISO values, as noisy images mean noisy photogrammetric models. 

3.2. Data Processing  

3.2.1. RAW Image Processing 

When capturing images, it is important to always capture the highest quality image possible. To do so, 
the camera should always be set to a RAW format, uncompressed or lossless compressed at the highest 
bit depth possible. Compared to JPEG images, RAW images have more latitude in post processing. This 
ability to post process (up to 1.7 ev with no loss in quality) is important for gigapixel image construction 
because of the length of time it takes to capture one (between 20 min to 3 h), changing light conditions 
and a wide dynamic range of landscapes. The stitching of individual gigapixel images is simple and can 
be done with a wide variety of dedicated software. The GigaPan Stitch software is included with the 
purchase of a robotic head, but other suites include PTGUI, HugIn and Microsoft ICE. Each of these 
software suites will blend the constituent images into a single panorama. The constituent images, 
however, should be saved as they will be used for the photogrammetry. 

3.2.2. 3-Dimensional Reconstruction 

To convert gigapixel images into a 3D point cloud image must be collected following the fan setup 
model—the primary difference with the traditional methodology being that at each location hundreds 
of images will be taken. ADAMTech Calibcam is the first step in the 3D reconstruction process. To 
create a model, every individual photo must be imported into one of a number of camera stations. Each 
camera station represents a single gigapixel capture. In the process of creating this 3D model, 
Calibcam can also merge the photos together and output an orthorectified 2D panoramic image.  

All images must first be matched within their own camera station, and then each camera station 
must be matched image by image. Calibcam can do this automatically, but manual matching is 
sometimes necessary. At this stage the ability to reference a fully stitched gigapixel image will enable 
faster referencing between images collected at different camera stations. By supervising the generation 
of bundle points between the hundreds of image pairs we have been able to obtain an image accuracy 
of 0.1 pixels. That is to say, the models are accurate to within 1/10th of the size of a ground pixel, i.e., 
the pixel projected into the real world. The accuracies achieved by this hybrid fan based 
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photogrammetry are equal to that of standard photogrammetry as no separate algorithms or processing 
is required. It should be noted that the generation of a point cloud from the gigapixel input images can 
take multiple tens of hours. This, however, can be optimized by using parallel computing techniques 
and faster workstations.  

3.2.3. Three Dimensional Surface Generation 

Following the generation of the 3D point cloud from the gigapixel input images, they are imported 
as an unorganized point cloud into the PolyWorks IMAlign module [15]. The PolyWorks suite of 
software programs enable the unorganized point cloud to be converted to a true 3D meshed surface. 
The creation of a 3D mesh is desirable as it enables complex calculations of discontinuity orientations 
and volumetric measurements, and directional evaluations not possible in a 2.5D TIN based 
environment [16].  

4. Field Sites 

The development of data collection workflows and techniques were originally conducted in 
Kingston, Canada at simple outcrop settings; sites primarily consisted of highway roadcuts. This 
enabled rapid data collection and testing of various equipment components, setups and data processing 
routines. After approximately one year of detailed testing, a full scale field mission was conducted in 
May 2012 in Norway. The testing in Norway was conducted at two sites, one in the Rjukan Valley of 
central Norway and one in the Gudvangen Valley of Western Norway, as illustrated in Figure 5. The 
Gudvangen Valley is characterized by near vertical rock faces extending over 1,000 m above sea level 
from the valley floor. Both of these locations are challenging sites to conduct photogrammetry as there 
is a limited availability of locations from which to collect data, variable weather conditions (frequent 
rain, fog, and high winds), extreme topographical differences across the regions to be imaged, and no 
possibility of survey equipment for control on the imaged rock faces. However, the inherent challenges 
of the sites were the reason they were selected for this test. Information with respect to the 
photographic data collected at both sites that are used for the generation of the 3D photogrammetry 
point clouds are summarized in Table 1. 

The density of the resultant 3D point clouds generated from the fan-based gigapixel images are 
reported in Table 2 as well as the pixel accuracy due to the reconstruction. However, it is critical to 
note that the accuracies reported in Table 2 represent those from the 3D reconstruction of the point 
cloud form the data. The errors reported are not based on a true scale. Thus meaning that for a given 
RMS error in the reconstruction process the effective spatial error will increase as a function of the 
distance between the camera and the object.  

Table 1. Detailed breakdown of images collected at the Gudvangen and Rjukan sites in 
Norway. 

Site Name 
Date of Image 

Collection 
Spectral 

Space 
# of Setup 
Locations 

# of Images 
Captured 

# of 
Megapixels 

Average Base to 
Distance Ratio 

Gudvangen 13 May 2012 RGB 2 490 5,880 1:7 
Rjukan 14 May 2012 RGB 3 1,164 13,968 1:4 
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Table 2. Detailed breakdown of image and 3D data collected at the Gudvangen and Rjukan 
sites in Norway. 

Site Name 
Average Point Cloud 

Density (pts/m2) 
Approx. Average 

Distance to Object (m) 
Posteriori 

Variance Factor 
Average 

Image RMS 

Gudvangen 1,358 1,000 1.1587 0.166 pixels 

Rjukan 9,000 800 0.9273 0.168 pixels 

5. Results 

The primary and tangible results of this preliminary research are the 3D surface models generated 
from the gigapixel photography. To illustrate the results in context, two 3D surface models are 
presented below as they would be used in a standard engineering geology evaluation of a rockmass 
using state-of-the-art stereo-photogrammetry or LiDAR data. These analyses are completed according 
to workflows and methodologies published by [17–23]. As well, data generated though this study at an 
early stage where used in a geological mapping exercise as published in the International Journal of 
Rock Mechanics and Mining Science [24]. 

5.1. Gudvangen 

The complete Gudvangen dataset consists of two separate gigapixel images collected at the base of 
the slope; the resultant 2D images are 2.6 and 3.3 gigapixels. By selecting a subset of the full area that 
is of high interest near the peak of the mountain, a point cloud containing 22 million xyzrgb points  
was generated.  

The rockmass under analysis in the Gudvangen Valley is a classical example of a mountainside that 
exhibits continual individual rock block failures. The engineering geological application of 3D data at 
this site is to assess zones of instability through evaluation of overhanging blocks and information 
relating to the structure of the discontinuities within the rockmass. Through the creation of the 3D 
surface model, which is generated from the points created in the gigapixel photogrammetric 
conversion, the user is able to use direction lighting to highlight specific features. In this example a red 
light is used to illuminate the model in the z (or upward) direction; this process allows the user to visually 
identify all overhanging rock blocks, as illustrated in Figure 6(a). As published by Lato et al. [18] this 
technique is extremely useful for a visual evaluation of the rockmass. Furthermore, as illustrated in 
Figure 6(c), discontinuity orientations are obtained directly from the meshed LiDAR data and plotted 
in a stereographic analysis program for kinematic evaluation of the geological structure [24]. Both of 
these typical analyses of digital data are extremely effective and efficient using gigapixel 
photogrammetry data.  
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resolution of terrestrial LiDAR scanners with the accuracy and affordability of digital  
stereo-photogrammetry. 

6.2. Limitations and Future Research 

The combination of gigapixel imaging and digital stereo-photogrammetry is a potent new remote 
sensing observational technology. The inherent scale-independence of photogrammetry allows for 
comparatively inexpensive modeling at ranges exceeding 1 km, and allows at the same time the 
capturing of colour data useful in monitoring rock falls and the identification of rock geology. The 
authors also believe that with increasing camera resolution important friction parameters such as 
surface roughness, an important metric for slide planes [28–29], may be assessed. While not currently 
part of a field geologist’s standard kit, the addition of a tripod, DSLR camera and GigaPan head is not 
unduly onerous. As addressed in the current literature, the applications and demand of high resolution 
photogrammetric solutions is high [30–32] and gigapixel photogrammetry should help enable an ever 
further implementation of this low-cost method of producing 3D topological data.  

While gigapixel imaging with commercially available cameras and robotic heads can and should be 
implemented from today in natural hazard monitoring, several problems remain in the routine use of 
stereo gigapixel datasets to construct 3D models. First, the scaling and orientation of  
photogrammetry-derived models remain more difficult than for LiDAR. In remote areas survey-grade 
GPS or total stations can be difficult to bring to the field. With constant improvements, however, we 
believe that small decimeter or centimeter GPS receivers could be used to geo-tag photos as soon as 
they are acquired in the field to create a seamless recording workflow. Likewise, geotagging with a 
triple-axis compass could obviate the identification of vertical and/or horizontal planes in the images to 
establish absolute orientation. Second, the building of gigapixel-scale models remains very time 
consuming even with the premier software packages and fastest workstations. 64-bit software will be 
key for high-resolution photogrammetry projects in excess of 500 images, as will better automated 
tools for pair-matching hundreds or thousands of individual images. Third, a more robust survey-grade 
version of the GigaPan head that can support even longer professional telephoto lenses is desirable, 
though not essential given that the small market for such a tool may make its expense outweigh its 
benefits. As we have already suggested, improvements in digital sensor technology may make long 
telephoto lenses (focal length > 200 mm) unnecessary.  

7. Conclusions  

The research presented in this study illustrates an innovative approach to photogrammetry based on 
a hybrid fan-setup gigapixel photography, not traditional megapixel photography. The difference 
observed through the implementation of gigapixel images into a photogrammetry setup is the 
unprecedented density of the resultant 3D data. Results presented show point densities at over  
9,000 pts/m2 at distances of approximately 800 m (equaling approximately 1 pt/cm2). The applied 
results in terms of structural mapping and geomechanics through volumetric assessment for natural 
hazard evaluation prove the usability of the data.  

Gigapixel photography and gigapixel photogrammetry are emerging techniques in the world of 
ground based terrestrial remote sensing. Their potential applications are widespread as are the data 
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collection and processing configurations. Gigapixel photogrammetry has an element of uniqueness as 
no literature exists on that subject within the geosciences community, and therefore it must be widely 
tested and validated before it will become a state-of-practice tool. 
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