Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = geomagnetic matching assisted navigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1272 KB  
Article
Complex Environmental Geomagnetic Matching-Assisted Navigation Algorithm Based on Improved Extreme Learning Machine
by Jian Huang, Zhe Hu and Wenjun Yi
Sensors 2025, 25(14), 4310; https://doi.org/10.3390/s25144310 - 10 Jul 2025
Viewed by 685
Abstract
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the [...] Read more.
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the Northern Goshawk Optimization (NGO) algorithm is used to optimize the initial weights and biases of the Extreme Learning Machine (ELM). To enhance the matching performance of the NGO-ELM algorithm, three improvements are proposed to the NGO algorithm. The effectiveness of these improvements is validated using the CEC2005 benchmark function suite. Additionally, the IGRF-13 model is utilized to generate a geomagnetic matching dataset, followed by comparative testing of five geomagnetic matching models: INGO-ELM, NGO-ELM, ELM, INGO-XGBoost, and INGO-BP. The simulation results show that after the airborne equipment acquires the geomagnetic data, it only takes 0.27 µs to obtain the latitude, longitude, and altitude of the aerial vehicle through the INGO-ELM model. After unit conversion, the average absolute errors are approximately 6.38 m, 6.43 m, and 0.0137 m, respectively, which significantly outperform the results of four other models. Furthermore, when noise is introduced into the test set inputs, the positioning error of the INGO-ELM model remains within the same order of magnitude as those before the noise was added, indicating that the model exhibits excellent robustness. It has been verified that the geomagnetic matching-assisted navigation algorithm proposed in this paper can achieve real-time, accurate, and stable positioning, even in the presence of observational errors from the magnetic sensor. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 3233 KB  
Article
Performance Evaluation of a Bioinspired Geomagnetic Sensor and Its Application for Geomagnetic Navigation in Simulated Environment
by Hongkai Shi, Ruiqi Tang, Qingmeng Wang and Tao Song
Sensors 2024, 24(19), 6477; https://doi.org/10.3390/s24196477 - 8 Oct 2024
Cited by 1 | Viewed by 1741
Abstract
For geomagnetic navigation technology, taking inspiration from nature and leveraging the principle of animals’ utilization of the geomagnetic field for long-distance navigation, and employing biomimetic technology to develop higher-precision geomagnetic sensors and more advanced navigation strategies, has emerged as a new trend. Based [...] Read more.
For geomagnetic navigation technology, taking inspiration from nature and leveraging the principle of animals’ utilization of the geomagnetic field for long-distance navigation, and employing biomimetic technology to develop higher-precision geomagnetic sensors and more advanced navigation strategies, has emerged as a new trend. Based on the two widely acknowledged biological magnetic induction mechanisms, we have designed a bioinspired weak magnetic vector (BWMV) sensor and integrated it with neural networks to achieve geomagnetic matching navigation. In this paper, we assess the performance of the BWMV sensor through finite element model simulation. The result validates its high measurement accuracy and outstanding adaptability to installation errors with the assistance of specially trained neural networks. Furthermore, we have enhanced the bioinspired geomagnetic navigation algorithm and proposed a more advanced search strategy to adapt to navigation under the condition of no prior geomagnetic map. A simulated geomagnetic navigation platform was constructed based on the finite element model to simulate the navigation of the BWMV sensor in geomagnetic environments. The simulated navigation experiment verified that the proposed search strategy applied to the BWMV sensor can achieve high-precision navigation. This study proposes a novel approach for the research of bioinspired geomagnetic navigation technology, which holds great development prospects. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

Back to TopTop