Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = genesis 1: 26

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1164 KB  
Article
Babylonian-Inspired Biblical Features and the Yahwistic Exilic History
by Tallay Ornan
Religions 2025, 16(8), 1081; https://doi.org/10.3390/rel16081081 - 20 Aug 2025
Viewed by 2720
Abstract
The framing of the Hebrew Bible in the Mesopotamian–Babylonian landscape is evident in two of its central themes. First, Abraham, the forefather of the Hebrews, is presented as a native of Ur in south Mesopotamia, whence he left for Harran and then reached [...] Read more.
The framing of the Hebrew Bible in the Mesopotamian–Babylonian landscape is evident in two of its central themes. First, Abraham, the forefather of the Hebrews, is presented as a native of Ur in south Mesopotamia, whence he left for Harran and then reached the Promised Land. Second is the exile of the Judahite elites to Babylonia, and the later return of some of them to Jerusalem to build their Second Temple. As the Bible was written, rewritten, and compiled by Babylonian exiles, primarily authored after the Fall of Jerusalem, its compilation by Judean exiles reveals a certain legitimization for existence in Exile, namely, the first revelation of YHWH outside of the Promised Land. This article examines the impact of the Babylonian surroundings on the Exiles’ approach to the representation of YHWH. It surveys the role of the Levantine goddess ’Ašerah, while proposing that alongside ’Ašerah, there may have been a male god named ’Ašer who, in pre-exilic times, was probably part of the Yahwistic religion and who was subsequently eliminated or degraded by the Judean exilic compilers of the Bible as it has reached us. Full article
(This article belongs to the Special Issue The Bible and Ancient Mesopotamia)
30 pages, 3856 KB  
Article
Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects
by Anthony H. Cincotta, Eugenio Cersosimo, Mariam Alatrach, Michael Ezrokhi, Christina Agyin, John Adams, Robert Chilton, Curtis Triplitt, Bindu Chamarthi, Nicholas Cominos and Ralph A. DeFronzo
Int. J. Mol. Sci. 2022, 23(16), 8851; https://doi.org/10.3390/ijms23168851 - 9 Aug 2022
Cited by 11 | Viewed by 5883
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic [...] Read more.
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk. Full article
Show Figures

Figure 1

Back to TopTop