Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = generalized Burgers’ nanofluid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7408 KB  
Article
Electromagnetic Control and Dynamics of Generalized Burgers’ Nanoliquid Flow Containing Motile Microorganisms with Cattaneo–Christov Relations: Galerkin Finite Element Mechanism
by Faisal Shahzad, Wasim Jamshed, Tanveer Sajid, MD. Shamshuddin, Rabia Safdar, S. O. Salawu, Mohamed R. Eid, Muhammad Bilal Hafeez and Marek Krawczuk
Appl. Sci. 2022, 12(17), 8636; https://doi.org/10.3390/app12178636 - 29 Aug 2022
Cited by 26 | Viewed by 2062
Abstract
In our research work, we have developed a model describing the characteristics of the bio-convection and moving microorganisms in the flows of a magnetized generalized Burgers’ nanoliquid with Fourier’s and Fick’s laws in a stretchable sheet. Considerations have been made to Cattaneo–Christov mass [...] Read more.
In our research work, we have developed a model describing the characteristics of the bio-convection and moving microorganisms in the flows of a magnetized generalized Burgers’ nanoliquid with Fourier’s and Fick’s laws in a stretchable sheet. Considerations have been made to Cattaneo–Christov mass and heat diffusion theory. According to the Cattaneo–Christov relation, the Buongiorno phenomenon for the motion of a nanoliquid in the generalized Burgers’ fluid has also been applied. Similarity transformations have been used to convert the control system of the regulating partial differential equations (PDEs) into ordinary differential equations (ODEs). The COMSOL software has been applied to obtain mathematical results of non-linear equations via the Galerkin finite element method (G-FEM). Logical and graphical measurements for temperature, velocity, and microorganisms analysis have also been examined. Moreover, nanoparticle concentrations have been achieved by examining different approximations of obvious physical parameters. Computations of this model show that there is a direct relationship among the temperature field and thermal Biot number and parameter of the generalized Burgers’ fluid. The temperature field is increased to grow the approximations of the thermal Biot number and parameter of generalized Burgers’ fluid. It is reasonable to deduce that raising the chemical reaction parameter and concentricity relaxation parameter or decreasing the Prandtl number, concentricity Biot quantity, and active energy parameter can significantly increase the nanoparticles concentration dispersion. Full article
(This article belongs to the Special Issue Smart Materials for Control of Structural Dynamics)
Show Figures

Figure 1

9 pages, 878 KB  
Article
Appearance of a Solitary Wave Particle Concentration in Nanofluids under a Light Field
by Abram I. Livashvili, Victor V. Krishtop, Polina V. Vinogradova, Yuriy M. Karpets, Vyacheslav G. Efremenko, Alexander V. Syuy, Evgenii N. Kuzmichev and Pavel V. Igumnov
Nanomaterials 2021, 11(5), 1291; https://doi.org/10.3390/nano11051291 - 14 May 2021
Cited by 6 | Viewed by 2294
Abstract
In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are [...] Read more.
In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid—water/silver—are given. The results of this study can be useful in the creation of next-generation solar collectors. Full article
(This article belongs to the Special Issue Heat Transfer and Fluids Properties of Nanofluids)
Show Figures

Figure 1

19 pages, 5153 KB  
Article
On Generalized Fourier’s and Fick’s Laws in Bio-Convection Flow of Magnetized Burgers’ Nanofluid Utilizing Motile Microorganisms
by Ali Saleh Alshomrani
Mathematics 2020, 8(7), 1186; https://doi.org/10.3390/math8071186 - 19 Jul 2020
Cited by 10 | Viewed by 2921
Abstract
This article describes the features of bio-convection and motile microorganisms in magnetized Burgers’ nanoliquid flows by stretchable sheet. Theory of Cattaneo–Christov mass and heat diffusions is also discussed. The Buongiorno phenomenon for nanoliquid motion in a Burgers’ fluid is employed in view of [...] Read more.
This article describes the features of bio-convection and motile microorganisms in magnetized Burgers’ nanoliquid flows by stretchable sheet. Theory of Cattaneo–Christov mass and heat diffusions is also discussed. The Buongiorno phenomenon for nanoliquid motion in a Burgers’ fluid is employed in view of the Cattaneo–Christov relation. The control structure of governing partial differential equations (PDEs) is changed into appropriate ordinary differential equations (ODEs) by suitable transformations. To get numerical results of nonlinear systems, the bvp4c solver provided in the commercial software MATLAB is employed. Numerical and graphical data for velocity, temperature, nanoparticles concentration and microorganism profiles are obtained by considering various estimations of prominent physical parameters. Our computations depict that the temperature field has direct relation with the thermal Biot number and Burgers’ fluid parameter. Here, temperature field is enhanced for growing estimations of thermal Biot number and Burgers’ fluid parameter. Full article
(This article belongs to the Special Issue Applications of Partial Differential Equations in Engineering)
Show Figures

Figure 1

Back to TopTop