Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = gastric acid battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 8445 KiB  
Article
Prototyping of an All-pMOS-Based Cross-Coupled Voltage Multiplier in Single-Well CMOS Technology for Energy Harvesting Utilizing a Gastric Acid Battery
by Shinya Yoshida, Hiroshi Miyaguchi and Tsutomu Nakamura
Electronics 2019, 8(7), 804; https://doi.org/10.3390/electronics8070804 - 18 Jul 2019
Cited by 6 | Viewed by 4409
Abstract
A gastric acid battery and its charge storage in a capacitor are a simple and safe method to provide a power source to an ingestible device. For that method, the electromotive force of the battery should be boosted for storing a large amount [...] Read more.
A gastric acid battery and its charge storage in a capacitor are a simple and safe method to provide a power source to an ingestible device. For that method, the electromotive force of the battery should be boosted for storing a large amount of energy. In this study, we have proposed an all-p-channel metal-oxide semiconductor (pMOS)-based cross-coupled voltage multiplier (CCVM) utilizing single-well CMOS technology to achieve a voltage boosting higher than from a conventional complementary MOS (CMOS) CCVM. We prototyped a custom integrated circuit (IC) implemented with the above CCVMs and a ring oscillator as a clock source. The characterization experiment demonstrated that our proposed pMOS-based CCVM can boost the input voltage higher because it avoids the body effect problem resulting from an n-channel MOS transistor. This circuit was also demonstrated to significantly reduce the circuit area on the IC, which is advantageous as it reduces the chip size or provides an area for other functional circuits. This simple circuit structure based on mature and low-cost technologies matches well with disposal applications such as an ingestible device. We believe that this pMOS-based CCVM has the potential to become a useful energy harvesting circuit for ingestible devices. Full article
(This article belongs to the Special Issue Energy Efficient Circuit Design Techniques for Low Power Systems)
Show Figures

Figure 1

Back to TopTop