Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = galvanizing slag

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6551 KiB  
Article
An Online Monitoring System for In Situ and Real-Time Analyzing of Inclusions within the Molten Metal
by Yunfei Wu, Hao Yan, Jiahao Wang, Xianzhao Na, Xiaodong Wang and Jincan Zheng
Sensors 2024, 24(9), 2767; https://doi.org/10.3390/s24092767 - 26 Apr 2024
Cited by 1 | Viewed by 1367
Abstract
Traditional methods for assessing the cleanliness of liquid metal are characterized by prolonged detection times, delays, and susceptibility to variations in sampling conditions. To address these limitations, an online cleanliness-analyzing system grounded in the method of the electrical sensing zone has been developed. [...] Read more.
Traditional methods for assessing the cleanliness of liquid metal are characterized by prolonged detection times, delays, and susceptibility to variations in sampling conditions. To address these limitations, an online cleanliness-analyzing system grounded in the method of the electrical sensing zone has been developed. This system facilitates real-time, in situ, and quantitative analysis of inclusion size and amount in liquid metal. Comprising pneumatic, embedded, and host computer modules, the system supports the continuous, online evaluation of metal cleanliness across various metallurgical processes in high-temperature environments. Tests conducted with gallium liquid at 90 °C and aluminum melt at 800 °C have validated the system’s ability to precisely and quantitatively detect inclusions in molten metal in real time. The detection procedure is stable and reliable, offering immediate data feedback that effectively captures fluctuations in inclusion amount, thereby meeting the metallurgical industry’s demand for real-time analyzing and control of inclusion cleanliness in liquid metal. Additionally, the system was used to analyze inclusion size distribution during the hot-dip galvanizing process. At a zinc melt temperature of 500 °C, it achieved a detection limit of 21 μm, simultaneously providing real-time data on the size and amount distribution of inclusions. This represents a novel strategy for the online monitoring and quality control of zinc slag throughout the hot-dip galvanizing process. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

20 pages, 14216 KiB  
Article
Purification and Recovery of Hot-Dip Galvanizing Slag via Supergravity-Induced Cake-Mode Filtration
by Shuai Zhang, Zhe Wang, Xi Lan, Lei Shi and Zhancheng Guo
Metals 2024, 14(1), 100; https://doi.org/10.3390/met14010100 - 14 Jan 2024
Cited by 2 | Viewed by 2057
Abstract
The elimination and retrieval of slag produced during the hot-dip galvanizing process are crucial in reducing plating defects and enhancing economic efficiency. Hot-dip galvanizing slag can be separated and purified efficiently by using graphite carbon felt filtration in a supergravity field. The effects [...] Read more.
The elimination and retrieval of slag produced during the hot-dip galvanizing process are crucial in reducing plating defects and enhancing economic efficiency. Hot-dip galvanizing slag can be separated and purified efficiently by using graphite carbon felt filtration in a supergravity field. The effects of the gravity coefficient (G), separation temperature (T), and separation time (t) on the separation efficiency were investigated. Under the optimal conditions as G = 300, T = 460 °C, and t = 120 s, these conditions yielded filtered zinc with 0.022 wt% Fe and 1.097 wt% Al. The separation efficiencies achieved were 87% for the acquisition ratio of filtered zinc (AZn), 93.67% for the recovery ratio of zinc (RZn), and 96.01% for the loss ratio of iron (LFe). Based on these laboratory findings, an amplified centrifugal separation apparatus was conceptually designed for future online separation and recycle of zinc slag on an engineering scale. The filtered zinc obtained from this apparatus contained 0.027 wt% Fe and 1.844 wt% Al, while the recovery ratio of zinc (RZn) and the loss ratio of iron (LFe) achieved 85.97% and 95.47%, respectively. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 1127 KiB  
Review
Electrochemical Sensors for Controlling Oxygen Content and Corrosion Processes in Lead-Bismuth Eutectic Coolant—State of the Art
by Sergey N. Orlov, Nikita A. Bogachev, Andrey S. Mereshchenko, Alexandr A. Zmitrodan and Mikhail Yu. Skripkin
Sensors 2023, 23(2), 812; https://doi.org/10.3390/s23020812 - 10 Jan 2023
Cited by 6 | Viewed by 2859
Abstract
Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active [...] Read more.
Controlling oxygen content in the primary circuit of nuclear reactors is one of the key tasks needed to ensure the safe operation of nuclear power plants where lead-bismuth eutectic alloy (LBE) is used as a coolant. If the oxygen concentration is low, active corrosion of structural materials takes place; upon increase in oxygen content, slag accumulates due to the formation of lead oxide. The generally accepted method of measuring the oxygen content in LBE is currently potentiometry. The sensors for measuring oxygen activity (electrochemical oxygen sensors) are galvanic cells with two electrodes (lead-bismuth coolant serves as working electrode) separated by a solid electrolyte. Control of corrosion and slag accumulation processes in circuits exploring LBE as a coolant is also based on data obtained by electrochemical oxygen sensors. The disadvantages of this approach are the low efficiency and low sensitivity of control. The alternative, Impedance Spectroscopy (EIS) Sensors, are proposed for Real-Time Corrosion Monitoring in LBE system. Currently their applicability in static LBE at temperatures up to 600 °C is shown. Full article
Show Figures

Figure 1

12 pages, 3891 KiB  
Article
Experimental and Numerical Analyses of a Novel Magnetostatic Force Sensor for Defect Inspection in Ferromagnetic Materials
by Bo Wang, San Zhang, Xinyue Chen, Fujie Wang and Baohui Xu
Magnetochemistry 2022, 8(12), 182; https://doi.org/10.3390/magnetochemistry8120182 - 7 Dec 2022
Cited by 1 | Viewed by 1704
Abstract
An innovative magnetostatic force sensor consisting of a laser source, a tiny cantilever beam, and a small permanent magnet was developed and used for defect inspection in ferromagnetic samples in the present article. The penetrating zone within a ferromagnetic material under the magnetic [...] Read more.
An innovative magnetostatic force sensor consisting of a laser source, a tiny cantilever beam, and a small permanent magnet was developed and used for defect inspection in ferromagnetic samples in the present article. The penetrating zone within a ferromagnetic material under the magnetic field provided by a permanent magnet was called the magnetic sensing zone (MSZ), and surface or internal defects within the MSZ were inspected by measuring the change in the magnetostatic force. This magnetostatic force could be calculated by the Maxwell tensor integrating over the surface and interface of a ferromagnetic material. Numerical and experimental results demonstrated that this sensor was reliable and could precisely inspect the defects of different sizes in ferromagnetic samples. In summary, the sensor proposed in this paper has the potential for industrial applications to detect surface and sub-surface tiny defects on ferromagnetic steel thin sheets, such as the zinc slag defect of hot galvanized sheets, cracks on cold-rolled sheets, and the ferromagnetic oscillation marks of continuous casting. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

16 pages, 4043 KiB  
Article
Sustainable Retrofitting and Moment Evaluation of Damaged RC Beams Using Ferrocement Composites for Vulnerable Structures
by Muthumani Soundararajan, Shanmugam Balaji, Jayaprakash Sridhar and Gobinath Ravindran
Sustainability 2022, 14(15), 9220; https://doi.org/10.3390/su14159220 - 27 Jul 2022
Cited by 4 | Viewed by 1833
Abstract
Ferrocement composites have uniform distribution and high surface area to volume ratio of reinforcement, which identifies them as a good strengthening material for use in structural applications. Because of these properties, they are considered as a substitution for some conventional structural strengthening methods. [...] Read more.
Ferrocement composites have uniform distribution and high surface area to volume ratio of reinforcement, which identifies them as a good strengthening material for use in structural applications. Because of these properties, they are considered as a substitution for some conventional structural strengthening methods. In this study, ten reinforced concrete (RC) beams of size 1220 mm × 100 mm × 150 mm were strengthened with ferrocement composites using a galvanized square weld, having volume fractions of 1.76% and 2.35%. For this study, ferrocement composites with mortar 1:2, w/c 0.4, and steel slag, with a 30% weight fraction of fine aggregate, are considered. The experimental results showed that the first crack load and the ultimate load are higher for RC beams strengthened with ferrocement having a volume fraction of 2.35% (Vr) and a steel slag replacement of 30%. Theoretical predictions were made based on the elastic moment approach; the ratio between the prediction to experimental moment capacity ranges between 0.99 and 1.04. The outcomes show that ferrocement is an effective strengthening technique for deficient reinforced concrete members Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

18 pages, 3825 KiB  
Article
Application of Isothermal and Isoperibolic Calorimetry to Assess the Effect of Zinc on Hydration of Cement Blended with Slag
by Pavel Šiler, Iva Kolářová, Radoslav Novotný, Jiří Másilko, Jan Bednárek, Martin Janča, Jan Koplík, Jan Hajzler, Lukáš Matějka, Michal Marko, Přemysl Pokorný, Tomáš Opravil and František Šoukal
Materials 2019, 12(18), 2930; https://doi.org/10.3390/ma12182930 - 10 Sep 2019
Cited by 9 | Viewed by 2888
Abstract
This work deals with the influence of zinc on cement hydration. The amount of zinc in cement has increased over recent years. This is mainly due to the utilization of solid waste and tires, which are widely used as a fuel in a [...] Read more.
This work deals with the influence of zinc on cement hydration. The amount of zinc in cement has increased over recent years. This is mainly due to the utilization of solid waste and tires, which are widely used as a fuel in a rotary kiln. Zinc can also be introduced to cement through such secondary raw materials as slag, due to increased recycling of galvanized materials. The aim of this work was to determine the effect of zinc on the hydration of Portland cement, blended with ground blast furnace slag (GBFS). This effect was studied by isothermal and isoperibolic calorimetry. Both calorimetry methods are suitable for measurements during the first days of hydration. Isoperibolic calorimetry monitors the hydration process in real-life conditions, while isothermal calorimetry does so at a defined chosen temperature. Zinc was added to the cement in the form of two soluble salts, namely Zn(NO3)2, ZnCl2, and a poorly soluble compound, ZnO. The concentration of added zinc was chosen to be 0.05, 0.1, 0.5, and 1mass percent. The amount of GBFS replacement was 15% of cement dosage. The newly formed hydration products were identified by X-ray diffraction method (XRD). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

Back to TopTop