Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = gadolinium aluminate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2905 KiB  
Article
Experimental Observation of Possible Pressure-Induced Phase Transformation in GdAlO3 Perovskite Using In Situ X-ray Diffraction
by Maria Mora, Andriy Durygin, Vadym Drozd, Shanece Esdaille, Jiuhua Chen, Surendra Saxena, Xue Liang and Leonid Vasylechko
Crystals 2023, 13(7), 1060; https://doi.org/10.3390/cryst13071060 - 5 Jul 2023
Cited by 1 | Viewed by 2167
Abstract
Gadolinium aluminate perovskite (GdAlO3) was studied at high pressures of up to 23 GPa in a diamond anvil cell (DAC) using monochromatic synchrotron X-ray powder diffraction. Evidence of a pressure-induced phase transformation from orthorhombic (Pbnm) to rhombohedral (R [...] Read more.
Gadolinium aluminate perovskite (GdAlO3) was studied at high pressures of up to 23 GPa in a diamond anvil cell (DAC) using monochromatic synchrotron X-ray powder diffraction. Evidence of a pressure-induced phase transformation from orthorhombic (Pbnm) to rhombohedral (R3¯c) structure was observed at 21 GPa and further proved by DFT calculations. Before phase transition, the volumetric ratio of polyhedron A and B (i.e., VA/VB for ABX3 general notation) in the Pbnm phase continuously increased towards the ideal value of five at the transition, indicating a pressure-induced decrease in the structural distortion as opposed to the trend in many other orthorhombic perovskites (e.g., CaSnO3, CaGeO3, MgSiO3 and NaMgF3). Pressure–volume data of the Pbnm phase were fitted to the third-order Birch–Murnaghan equation of state yielding a bulk modulus (Ko) of 216 ± 7 GPa with a pressure derivative of the bulk modulus (Ko) of 5.8 GPa (fixed). This work confirms the pressure-induced phase transformation from orthorhombic to a higher symmetry structure previously predicted in GdAlO3 perovskite. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 3667 KiB  
Article
A Two-Dimensional Guidance Strategy to Fabricate Perovskite Gadolinium Aluminate Ceramic Film
by Tao Zhang, Lu Chen, Jing Yao and Qi Zhu
Coatings 2022, 12(12), 1927; https://doi.org/10.3390/coatings12121927 - 8 Dec 2022
Cited by 1 | Viewed by 2082
Abstract
Gadolinium aluminate is an effective host for doping with various ions, and it can emit various colors. However, it is not easy to prepare transparent ceramics of gadolinium aluminate using traditional methods, although transparent ceramics are very suitable for solid lighting. In this [...] Read more.
Gadolinium aluminate is an effective host for doping with various ions, and it can emit various colors. However, it is not easy to prepare transparent ceramics of gadolinium aluminate using traditional methods, although transparent ceramics are very suitable for solid lighting. In this work, a two-dimensional guidance strategy has been successfully carried out for perovskite-structured aluminate ceramic film. Through the two-dimensional interfacial reaction, GdAlO3:Eu3+ (GAP:Eu3+) transparent ceramic films were successfully fabricated using nanosheets exfoliated from layered gadolinium hydroxide, a rare earth source. The final films were tested by characterization techniques, including XRD, SEM, TEM, FT-IR, PLE/PL spectroscopy, temperature-dependent PL spectroscopy, and luminescence decay analysis. The perovskite film of transparent ceramics can be obtained by calcining LRH nanosheets on the substrate of amorphous alumina at 1550 °C in air with a reaction time of 2 h. During the interface reaction, temperature-dependent element diffusion takes the dominant role, and increased reactants take in the reaction with increasing calcination temperature. The grain for ceramic film is only 2–5 μm, which is much smaller than that for bulk ceramic. This is mainly due to the lower temperature and the interface diffusion. Ceramic film has a high transmittance larger than 90% at the visible range. Upon UV excitation at 254 nm, the film exhibits intense emission at the red wavelength range. The outcomes described in this work may have wide implications for transparent ceramics and layered rare-earth hydroxides. Full article
(This article belongs to the Special Issue Ceramic Films and Coatings: Properties and Applications)
Show Figures

Figure 1

10 pages, 19403 KiB  
Article
Porous Nanostructured Gadolinium Aluminate for High-Sensitivity Humidity Sensors
by Corneliu Doroftei and Liviu Leontie
Materials 2021, 14(22), 7102; https://doi.org/10.3390/ma14227102 - 22 Nov 2021
Cited by 19 | Viewed by 2420
Abstract
This paper presents the synthesis of gadolinium aluminate (GdAlO3), an oxide compound with a perovskite structure, for applications as a capacitive and/or resistive humidity sensor. Gadolinium aluminate was synthesized by the sol-gel self-combustion method. This method allowed us to obtain a [...] Read more.
This paper presents the synthesis of gadolinium aluminate (GdAlO3), an oxide compound with a perovskite structure, for applications as a capacitive and/or resistive humidity sensor. Gadolinium aluminate was synthesized by the sol-gel self-combustion method. This method allowed us to obtain a highly porous structure in which open pores prevail, a structure favorable to humidity sensors. Most of the materials studied as capacitive/resistive humidity sensors have significant sensitivities only with respect to one of these types of sensors. In the case of the studied gadolinium aluminate with p-type electric conductivity, the relative humidity of the air has a significant influence on both capacitive and resistive types of electric humidity sensors. The capacity increases about 10,000 times, and the resistance decreases about 8000 times as the relative humidity increases from 0 to 98%. The investigated gadolinium aluminate can be used successfully to obtain high-sensitivity capacitive and/or resistive humidity sensors. Full article
Show Figures

Figure 1

13 pages, 4601 KiB  
Article
Rare-Earth Metals-Doped Nickel Aluminate Spinels for Photocatalytic Degradation of Organic Pollutants
by Elzbieta Regulska, Joanna Breczko, Anna Basa and Alina Teresa Dubis
Catalysts 2020, 10(9), 1003; https://doi.org/10.3390/catal10091003 - 2 Sep 2020
Cited by 28 | Viewed by 4384
Abstract
Visible-light-activated photocatalysts based on samarium-doped, europium-doped, and gadolinium-doped nickel aluminates (SmNA, EuNA, GdNA) were synthesized. The spinel crystalline structures of the doped mixed metal oxides were demonstrated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. The presence of the rare-earth metals [...] Read more.
Visible-light-activated photocatalysts based on samarium-doped, europium-doped, and gadolinium-doped nickel aluminates (SmNA, EuNA, GdNA) were synthesized. The spinel crystalline structures of the doped mixed metal oxides were demonstrated by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. The presence of the rare-earth metals (REMs) was confirmed by the energy-dispersive X-ray (EDX) studies. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectra revealed that the REMs-doped catalysts absorb in the full solar spectrum range covering both visible and near infrared wavelengths. Scanning electron microscopy (SEM) visualized the profound morphological alterations of the doped nickel aluminate samples. Consequently, the pore volume and the Brunauer-Emmett-Teller (BET) surface area decreased, while nanoparticles sizes increased. Fourier-transform infrared spectroscopy (FTIR) exposed that surfaces of REMs-doped nickel aluminates are rich in hydroxyl groups. Finally, the photocatalytic performance was notably increased through doping nickel aluminate (NA) with REMs; the highest activity was observed for EuNA. Full article
Show Figures

Graphical abstract

Back to TopTop