Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = fungal photoresponses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3615 KiB  
Review
An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms
by Özlem Sarikaya Bayram and Özgür Bayram
J. Fungi 2023, 9(5), 591; https://doi.org/10.3390/jof9050591 - 19 May 2023
Cited by 19 | Viewed by 5035
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, [...] Read more.
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi. Full article
(This article belongs to the Special Issue Signal Transductions in Fungi 2.0)
Show Figures

Figure 1

20 pages, 4610 KiB  
Review
Carbon Dots for Killing Microorganisms: An Update since 2019
by Fengming Lin, Zihao Wang and Fu-Gen Wu
Pharmaceuticals 2022, 15(10), 1236; https://doi.org/10.3390/ph15101236 - 8 Oct 2022
Cited by 39 | Viewed by 5640
Abstract
Frequent bacterial/fungal infections and occurrence of antibiotic resistance pose increasing threats to the public and thus require the development of new antibacterial/antifungal agents and strategies. Carbon dots (CDs) have been well demonstrated to be promising and potent antimicrobial nanomaterials and serve as potential [...] Read more.
Frequent bacterial/fungal infections and occurrence of antibiotic resistance pose increasing threats to the public and thus require the development of new antibacterial/antifungal agents and strategies. Carbon dots (CDs) have been well demonstrated to be promising and potent antimicrobial nanomaterials and serve as potential alternatives to conventional antibiotics. In recent years, great efforts have been made by many researchers to develop new carbon dot-based antimicrobial agents to combat microbial infections. Here, as an update to our previous relevant review (C 2019, 5, 33), we summarize the recent achievements in the utilization of CDs for microbial inactivation. We review four kinds of antimicrobial CDs including nitrogen-doped CDs, metal-containing CDs, antibiotic-conjugated CDs, and photoresponsive CDs in terms of their starting materials, synthetic route, surface functionalization, antimicrobial ability, and the related antimicrobial mechanism if available. In addition, we summarize the emerging applications of CD-related antimicrobial materials in medical and industry fields. Finally, we discuss the existing challenges of antimicrobial CDs and the future research directions that are worth exploring. We believe that this review provides a comprehensive overview of the recent advances in antimicrobial CDs and may inspire the development of new CDs with desirable antimicrobial activities. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Nanodrugs)
Show Figures

Graphical abstract

Back to TopTop