Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = fullerene symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5002 KiB  
Communication
Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap
by Xiaoshi Ju, Kun Bu, Chunxiao Zhang and Yuping Sun
Materials 2025, 18(11), 2533; https://doi.org/10.3390/ma18112533 - 28 May 2025
Viewed by 445
Abstract
Carbon is one of nature’s basic elements, hosting a tremendous number of allotropes benefiting from its capacity to generate sp, sp2, and sp3 hybridized carbon–carbon bonds. The exploration of novel carbon architectures has remained a pivotal [...] Read more.
Carbon is one of nature’s basic elements, hosting a tremendous number of allotropes benefiting from its capacity to generate sp, sp2, and sp3 hybridized carbon–carbon bonds. The exploration of novel carbon architectures has remained a pivotal focus in the fields of condensed matter physics and materials science for an extended period. In this paper, we, by using first-principles calculation, carry on a detailed investigation an an all-sp3 hybridized carbon structure in a 20-atom tetragonal unit cell with P43212 symmetry (D48, space group No. 96), and call it T20 carbon. The equilibrium energy of T20 carbon is −8.881 eV/atom, only 0.137 eV/atom higher than that of diamond, indicating that T20 is a superstable carbon structure. T20 is also a superhard carbon structure with a large Vicker’s hardness about 83.5 GPa. The dynamical stability of T20 was verified by means of phonon band spectrum calculations. Meanwhile, its thermal stability up to 1000 K was verified via ab initio molecular dynamics simulations. T20 is an indirect band-gap insulator with approximately 5.80 eV of a band gap. This value is obviously greater than the value in the diamond (5.36 eV). Moreover, the simulated X-ray diffraction pattern of T20 displays a remarkable match with the experimental data found in the milled fullerene soot, evidencing that T20 may be a potential modification discovered in this experimental work. Our work has given a systematical understanding on an all-sp3 hybridized superstable and superhard carbon allotrope with large band gap and provided a very competitive explanation for previous experimental data, which will also provide guidance for upcoming studies in theory and experiment. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

23 pages, 2278 KiB  
Review
Nanosized Being of Ionic Surfactant Micelles: An Advanced View on Micellization Process
by Olga S. Zueva, Mariia A. Kazantseva and Yuriy F. Zuev
Colloids Interfaces 2025, 9(2), 15; https://doi.org/10.3390/colloids9020015 - 28 Feb 2025
Cited by 1 | Viewed by 1401
Abstract
An advanced model of ionic surfactant micellization has been developed. The structural and kinetic properties of micelles were analyzed in parallel from a universally accepted point of view and taking into account the principles of quantum mechanics, the phenomenon of ion pairing in [...] Read more.
An advanced model of ionic surfactant micellization has been developed. The structural and kinetic properties of micelles were analyzed in parallel from a universally accepted point of view and taking into account the principles of quantum mechanics, the phenomenon of ion pairing in the Stern layer, the symmetry considerations, and the chaos theory. It was shown that a micelle can be considered as a layered fullerene-like structure with a cavity in its center, possessing the solid-like properties of micelles in radial directions and the liquid-like properties in the perpendicular ones, allowing for water penetration between the surfactant head group and nearby methylene groups. The dimensions of the minimal fullerene-like structure formed by the terminal hydrogen atoms of surfactant methyl groups around the central cavity, unable to be occupied by surfactant tail fragments, were estimated. It was indicated that permanently occurring surfactant self-organization/disintegration needs a probabilistic description and revision of processes occurring in micellar systems built by ionic surfactants. It was noted that the probabilistic approach alters the mechanism of colloidal dissolution of hydrocarbon compounds and their solubilization by micelles. The advanced model proposes the same macroscopic properties of micelles as the classical one but modifies the structural characteristics of micelles on the nanoscale. Full article
Show Figures

Graphical abstract

30 pages, 4214 KiB  
Article
Spectral Polynomials and Spectra of Graphs Beyond Cubic and Icosahedral Symmetries: n-Octahedra, n-Cubes, Symmetric and Semi-Symmetric Graphs, Giant Fullerene Cages and Generalized Petersen Graphs
by Krishnan Balasubramanian
Symmetry 2025, 17(2), 247; https://doi.org/10.3390/sym17020247 - 7 Feb 2025
Viewed by 1242
Abstract
We report the results of our computations of the spectral polynomials and spectra of a number of graphs possessing automorphism symmetries beyond cubic and icosahedral symmetries. The spectral (characteristic) polynomials are computed in fully expanded forms. The coefficients of these polynomials contain a [...] Read more.
We report the results of our computations of the spectral polynomials and spectra of a number of graphs possessing automorphism symmetries beyond cubic and icosahedral symmetries. The spectral (characteristic) polynomials are computed in fully expanded forms. The coefficients of these polynomials contain a wealth of combinatorial information that finds a number of applications in many areas including nanomaterials, genetic networks, dynamic stereochemistry, chirality, and so forth. This study focuses on a number of symmetric and semi-symmetric graphs with automorphism groups of high order. In particular, Heawood, Coxeter, Pappus, Möbius–Kantor, Tutte–Coxeter, Desargues, Meringer, Dyck, n-octahedra, n-cubes, icosahedral fullerenes such as C80(Ih), golden supergiant C240(Ih), Archimedean (Ih), and generalized Petersen graphs up to 720 vertices, among others, have been studied. The spectral polynomials are computed in fully expanded forms as opposed to factored forms. Several applications of these polynomials are briefly discussed. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

18 pages, 2622 KiB  
Review
Automorphism Groups in Polyhedral Graphs
by Modjtaba Ghorbani, Razie Alidehi-Ravandi and Matthias Dehmer
Symmetry 2024, 16(9), 1157; https://doi.org/10.3390/sym16091157 - 5 Sep 2024
Cited by 1 | Viewed by 2405
Abstract
The study delves into the relationship between symmetry groups and automorphism groups in polyhedral graphs, emphasizing their interconnected nature and their significance in understanding the symmetries and structural properties of fullerenes. It highlights the visual importance of symmetry and its applications in architecture, [...] Read more.
The study delves into the relationship between symmetry groups and automorphism groups in polyhedral graphs, emphasizing their interconnected nature and their significance in understanding the symmetries and structural properties of fullerenes. It highlights the visual importance of symmetry and its applications in architecture, as well as the mathematical structure of the automorphism group, which captures all of the symmetries of a graph. The paper also discusses the significance of groups in Abstract Algebra and their relevance to understanding the behavior of mathematical systems. Overall, the findings offer an inclusive understanding of the relationship between symmetry groups and automorphism groups, paving the way for further research in this area. Full article
Show Figures

Figure 1

26 pages, 1183 KiB  
Article
New Insights into Aromaticity through Novel Delta Polynomials and Delta Aromatic Indices
by Krishnan Balasubramanian
Symmetry 2024, 16(4), 391; https://doi.org/10.3390/sym16040391 - 27 Mar 2024
Cited by 8 | Viewed by 2541
Abstract
We have developed novel polynomials called delta polynomials, which are, in turn, derived from the characteristic and matching polynomials of graphs associated with polycyclic aromatic compounds. Natural logarithmic aromatic indices are derived from these delta polynomials, which are shown to provide new insights [...] Read more.
We have developed novel polynomials called delta polynomials, which are, in turn, derived from the characteristic and matching polynomials of graphs associated with polycyclic aromatic compounds. Natural logarithmic aromatic indices are derived from these delta polynomials, which are shown to provide new insights into the aromaticity of polycyclic aromatic compounds, including the highly symmetric C60 buckminsterfullerene, several other fullerenes, graphene, kekulene series and other cycloarenes, such as polycyclic circumcoronaphenes and coronoids. The newly developed aromatic index yields a value of 6.77 for graphene, 6.516865 for buckminsterfullerene C60(Ih), 5.914023 for kekulene (D6h symmetry), 6.064420 for coronene (D6h), 6.137828 for circumcoronene (D6h), 6.069668 for dicronylene and so forth. Hence, the novel scaled logarithmic aromatic delta indices developed here appear to provide good quantitative measures of aromaticity, especially when they are used in conjunction with other aromatic indicators. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

12 pages, 2944 KiB  
Article
Geometries, Electronic Structures, Bonding Properties, and Stability Strategy of Endohedral Metallofullerenes TM@C28 (TM = Sc, Y, La, Ti, Zr, Hf, V+, Nb+, Ta+)
by Dong Liu, Yuan Shui and Tao Yang
Inorganics 2024, 12(2), 40; https://doi.org/10.3390/inorganics12020040 - 25 Jan 2024
Viewed by 2044
Abstract
We performed quantum chemical calculations on the geometries, electronic structures, bonding properties, and stability strategy of endohedral metallofullerenes TM@C28 (TM = Sc, Y, La, Ti, Zr, Hf, V+, Nb+, Ta+). [...] Read more.
We performed quantum chemical calculations on the geometries, electronic structures, bonding properties, and stability strategy of endohedral metallofullerenes TM@C28 (TM = Sc, Y, La, Ti, Zr, Hf, V+, Nb+, Ta+). Our calculations revealed that there are three different lowest-energy structures with C2v, C3v, and Td symmetries for TM@C28. The HOMO–LUMO gap of all these structures ranges from 1.35 eV to 2.31 eV, in which [V@C28]+ has the lowest HOMO–LUMO gap of 1.35 eV. The molecular orbitals are mainly composed of fullerene cage orbitals and slightly encapsulated metal orbitals. The bonding analysis on the metal–cage interactions reveals they are dominated by the Coulomb term ΔEelstat and the orbital interaction term ΔEorb, in which the orbital interaction term ΔEorb contributes more than the Coulomb term ΔEelstat. The addition of one or two CF3 groups to [V@C28]+ could increase the HOMO–LUMO gap and further increase the stability of [V@C28]+. Full article
(This article belongs to the Special Issue Research on Metallofullerenes)
Show Figures

Figure 1

19 pages, 3759 KiB  
Article
Effect of Calcium and Fullerene Symmetry Spatial Minimization on Angiogenesis
by Manuel Rivas and Manuel Reina
Symmetry 2024, 16(1), 55; https://doi.org/10.3390/sym16010055 - 31 Dec 2023
Viewed by 1473
Abstract
The topological partition theory states that icosahedral group affine extensions (fullerenes symmetry) are the most effective way to energetically optimize the surface covering. In recent decades, potential applications of fullerene symmetry have emerged in the major fields of biology, like enzyme inhibition and [...] Read more.
The topological partition theory states that icosahedral group affine extensions (fullerenes symmetry) are the most effective way to energetically optimize the surface covering. In recent decades, potential applications of fullerene symmetry have emerged in the major fields of biology, like enzyme inhibition and antiviral therapy. This research suggests a novel perspective to interpret the underlying spatial organization of cell populations in tissues from the polyhedral graph theory. We adopted this theoretical framework to study HUVEC cell in vitro angiogenesis assays on Matrigel. This work underscores the importance of extracellular Ca2+ gradients, both from conditioned BJ and pretreated HUVEC cells, in angiogenesis fullerene-rule spatial minimization. Full article
Show Figures

Graphical abstract

25 pages, 1957 KiB  
Article
QSPR and Nano-QSPR: Which One Is Common? The Case of Fullerenes Solubility
by Alla P. Toropova, Andrey A. Toropov and Natalja Fjodorova
Inorganics 2023, 11(8), 344; https://doi.org/10.3390/inorganics11080344 - 21 Aug 2023
Cited by 3 | Viewed by 2328
Abstract
Background: The system of self-consistent models is an attempt to develop a tool to assess the predictive potential of various approaches by considering a group of random distributions of available data into training and validation sets. Considering many different splits is more [...] Read more.
Background: The system of self-consistent models is an attempt to develop a tool to assess the predictive potential of various approaches by considering a group of random distributions of available data into training and validation sets. Considering many different splits is more informative than considering a single model. Methods: Models studied here build up for solubility of fullerenes C60 and C70 in different organic solvents using so-called quasi-SMILES, which contain traditional simplified molecular input-line entry systems (SMILES) incorporated with codes that reflect the presence of C60 and C70. In addition, the fragments of local symmetry (FLS) in quasi-SMILES are applied to improve the solubility’s predictive potential (expressed via mole fraction at 298’K) models. Results: Several versions of the Monte Carlo procedure are studied. The use of the fragments of local symmetry along with a special vector of the ideality of correlation improves the predictive potential of the models. The average value of the determination coefficient on the validation sets is equal to 0.9255 ± 0.0163. Conclusions: The comparison of different manners of the Monte Carlo optimization of the correlation weights has shown that the best predictive potential was observed for models where both fragments of local symmetry and the vector of the ideality of correlation were applied. Full article
(This article belongs to the Special Issue Advances in Fullerene Science)
Show Figures

Figure 1

17 pages, 1311 KiB  
Article
Density Functional Theory for Buckyballs within Symmetrized Icosahedral Basis
by Chung-Yuan Ren, Raj Kumar Paudel and Yia-Chung Chang
Nanomaterials 2023, 13(13), 1912; https://doi.org/10.3390/nano13131912 - 23 Jun 2023
Cited by 1 | Viewed by 2266
Abstract
We have developed a highly efficient computation method based on density functional theory (DFT) within a set of fully symmetrized basis functions for the C60 buckyball, which possesses the icosahedral (Ih) point-group symmetry with 120 symmetry operations. We demonstrate [...] Read more.
We have developed a highly efficient computation method based on density functional theory (DFT) within a set of fully symmetrized basis functions for the C60 buckyball, which possesses the icosahedral (Ih) point-group symmetry with 120 symmetry operations. We demonstrate that our approach is much more efficient than the conventional approach based on three-dimensional plane waves. When applied to the calculation of optical transitions, our method is more than one order of magnitude faster than the existing DFT package with a conventional plane-wave basis. This makes it very convenient for modeling optical and transport properties of quantum devices related to buckyball crystals. The method introduced here can be easily extended to other fullerene-like materials. Full article
(This article belongs to the Special Issue Carbon Nanostructures as Promising Future Materials: 2nd Edition)
Show Figures

Figure 1

5 pages, 454 KiB  
Editorial
Postface for Applied Designs in Chemical Structures with High Symmetry
by Lorentz Jäntschi
Symmetry 2022, 14(10), 2044; https://doi.org/10.3390/sym14102044 - 30 Sep 2022
Cited by 1 | Viewed by 1771
Abstract
Probably the best example to start with with regard to structures with high symmetry (SHS) is C60 fullerene (buckminsterfullerene) [...] Full article
(This article belongs to the Special Issue Applied Designs in Chemical Structures with High Symmetry)
Show Figures

Figure 1

19 pages, 3123 KiB  
Article
Digitalizing Structure–Symmetry Relations at the Formation of Endofullerenes in Terms of Information Entropy Formalism
by Denis Sh. Sabirov, Alina A. Tukhbatullina and Igor S. Shepelevich
Symmetry 2022, 14(9), 1800; https://doi.org/10.3390/sym14091800 - 30 Aug 2022
Cited by 12 | Viewed by 2240
Abstract
Information entropy indices are widely used for numerical descriptions of chemical structures, though their applications to the processes are scarce. We have applied our original information entropy approach to filling fullerenes with a guest atom. The approach takes into account both the topology [...] Read more.
Information entropy indices are widely used for numerical descriptions of chemical structures, though their applications to the processes are scarce. We have applied our original information entropy approach to filling fullerenes with a guest atom. The approach takes into account both the topology and geometry of the fullerene structures. We have studied all possible types of such fillings and found that information entropy (ΔhR) and symmetry changes correlate. ΔhR is negative, positive or zero if symmetry is increased, reduced or does not change, respectively. The ΔhR value and structural reorganization entropy, a contribution to ΔhR, are efficient parameters for the digital classification of the fullerenes involved into the filling process. Based on the calculated values, we have shown that, as the symmetry of the fullerene cage becomes higher, the structural changes due to the filling it with a guest atom become larger. The corresponding analytical expressions and numerical data are discussed. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Nature-Inspired, Bio-Based Materials)
Show Figures

Figure 1

9 pages, 1712 KiB  
Article
Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells
by Muqing Chen, Yanyan Zeng, Gui Chen and Yongfu Qiu
Nanomaterials 2022, 12(14), 2355; https://doi.org/10.3390/nano12142355 - 9 Jul 2022
Cited by 2 | Viewed by 1940
Abstract
The high-regioselective synthesis of bisadducts based on low-symmetry C70 has been a challenging work due to the large amount of formed regioisomers, which require tedious separation procedures for isomeric purity and block their application in different fields. Herein, we successfully obtained a [...] Read more.
The high-regioselective synthesis of bisadducts based on low-symmetry C70 has been a challenging work due to the large amount of formed regioisomers, which require tedious separation procedures for isomeric purity and block their application in different fields. Herein, we successfully obtained a novel 1, 2, 3, 4-bis(triazolino)fullerene[C70] 2 with high regioselectivity by the rigid tether-directed regioselective synthesis strategy and the corresponding molecular structure was unambiguously confirmed by single-crystal X-ray crystallography characterization. The crystal data clearly show that the addition occurs at the domain of corannulene moiety at the end of ellipse C70 as well as the 1, 2, 3, 4-addition sites located at one hexagonal ring with a [6,6]-closed addition pattern. Furthermore, 2 was applied as an additive of perovskite layer to construct MAPbI3-based regular (n-i-p) perovskite solar cells, affording the power conversion efficiency (PCE) of 18.59%, which is a 7% enhancement relative to that of control devices without additive. Full article
(This article belongs to the Special Issue Fullerene Nanostructures: Synthesis, Functionalities and Applications)
Show Figures

Figure 1

39 pages, 6816 KiB  
Review
Symmetry and Combinatorial Concepts for Cyclopolyarenes, Nanotubes and 2D-Sheets: Enumerations, Isomers, Structures Spectra & Properties
by Krishnan Balasubramanian
Symmetry 2022, 14(1), 34; https://doi.org/10.3390/sym14010034 - 28 Dec 2021
Cited by 5 | Viewed by 3517
Abstract
This review article highlights recent developments in symmetry, combinatorics, topology, entropy, chirality, spectroscopy and thermochemistry pertinent to 2D and 1D nanomaterials such as circumscribed-cyclopolyarenes and their heterocyclic analogs, carbon and heteronanotubes and heteronano wires, as well as tessellations of cyclopolyarenes, for example, kekulenes, [...] Read more.
This review article highlights recent developments in symmetry, combinatorics, topology, entropy, chirality, spectroscopy and thermochemistry pertinent to 2D and 1D nanomaterials such as circumscribed-cyclopolyarenes and their heterocyclic analogs, carbon and heteronanotubes and heteronano wires, as well as tessellations of cyclopolyarenes, for example, kekulenes, septulenes and octulenes. We establish that the generalization of Sheehan’s modification of Pólya’s theorem to all irreducible representations of point groups yields robust generating functions for the enumeration of chiral, achiral, position isomers, NMR, multiple quantum NMR and ESR hyperfine patterns. We also show distance, degree and graph entropy based topological measures combined with techniques for distance degree vector sequences, edge and vertex partitions of nanomaterials yield robust and powerful techniques for thermochemistry, bond energies and spectroscopic computations of these species. We have demonstrated the existence of isentropic tessellations of kekulenes which were further studied using combinatorial, topological and spectral techniques. The combinatorial generating functions obtained not only enumerate the chiral and achiral isomers but also aid in the machine construction of various spectroscopic and ESR hyperfine patterns of the nanomaterials that were considered in this review. Combinatorial and topological tools can become an integral part of robust machine learning techniques for rapid computation of the combinatorial library of isomers and their properties of nanomaterials. Future applications to metal organic frameworks and fullerene polymers are pointed out. Full article
Show Figures

Figure 1

17 pages, 3220 KiB  
Article
Methodological Investigation for Hydrogen Addition to Small Cage Carbon Fullerenes
by Yuri Tanuma, Toru Maekawa and Chris Ewels
Crystals 2021, 11(11), 1334; https://doi.org/10.3390/cryst11111334 - 1 Nov 2021
Cited by 5 | Viewed by 2770
Abstract
Hydrogenated small fullerenes (Cn, n < 60) are of interest as potential astrochemical species, and as intermediates in hydrogen-catalysed fullerene growth. However, the computational identification of key stable species is difficult due to the vast configurationally space of structures. In this [...] Read more.
Hydrogenated small fullerenes (Cn, n < 60) are of interest as potential astrochemical species, and as intermediates in hydrogen-catalysed fullerene growth. However, the computational identification of key stable species is difficult due to the vast configurationally space of structures. In this study, we explored routes to predict stable hydrogenated small fullerenes. We showed that neither local fullerene geometry nor local electronic structure analysis was able to correctly predict subsequent low-energy hydrogenation sites, and sequential stable addition searches also sometimes failed to identify most stable hydrogenated fullerene isomers. Of the empirical and semi-empirical methods tested, GFN2-xTB consistently gave highly accurate energy correlations (r > 0.99) to full DFT-LDA calculations at a fraction of the computational cost. This allowed identification of the most stable hydrogenated fullerenes up to 4H for four fullerenes, namely two isomers of C28 and C40, via “brute force” systematic testing of all symmetry-inequivalent combinations. The approach shows promise for wider systematic studies of smaller hydrogenated fullerenes. Full article
(This article belongs to the Special Issue Applications of Fullerene Material)
Show Figures

Figure 1

13 pages, 1955 KiB  
Article
Covalently Bonded Fullerene Nano-Aggregates (C60)n: Digitalizing Their Energy–Topology–Symmetry
by Denis Sh. Sabirov, Ottorino Ori, Alina A. Tukhbatullina and Igor S. Shepelevich
Symmetry 2021, 13(10), 1899; https://doi.org/10.3390/sym13101899 - 9 Oct 2021
Cited by 18 | Viewed by 3428
Abstract
Fullerene dimers and oligomers are attractive molecular objects with an intermediate position between the molecules and nanostructures. Due to the size, computationally assessing their structures and molecular properties is challenging, as it currently requires high-cost quantum chemical techniques. In this work, we have [...] Read more.
Fullerene dimers and oligomers are attractive molecular objects with an intermediate position between the molecules and nanostructures. Due to the size, computationally assessing their structures and molecular properties is challenging, as it currently requires high-cost quantum chemical techniques. In this work, we have jointly studied energies, topological (Wiener indices and roundness), and information theoretic (information entropy) descriptors, and have obtained regularities in triad ‘energy–topology–symmetry’. We have found that the topological indices are convenient to indicating the most and least reactive atoms of the fullerene dimer structures, whereas information entropy is more suitable to evaluate odd–even effects on the symmetry of (C60)n. Quantum chemically assessed stabilities of selected C120 structures, as well as linear and zigzag (C60)n, are discussed. Full article
(This article belongs to the Special Issue Quantum Chemistry)
Show Figures

Figure 1

Back to TopTop