Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = free-swimming ciliates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2119 KiB  
Article
In-Situ Investigation of Copepod Predators of Ichthyophthirius multifiliis Theronts from Fish-Farming Pond
by Lijun Wang, Bingwen Xi, Kai Chen, Jun Xie and Liangkun Pan
Microorganisms 2025, 13(1), 38; https://doi.org/10.3390/microorganisms13010038 - 27 Dec 2024
Cited by 1 | Viewed by 1053
Abstract
Ichthyophthirius multifiliis, a parasitic ciliate, causes “white spot disease” in freshwater fish and poses a significant threat to global freshwater aquaculture. Eliminating the free-swimming theront stage from the aquaculture environment is a critical measure for controlling I. multifiliis infections. The natural predator [...] Read more.
Ichthyophthirius multifiliis, a parasitic ciliate, causes “white spot disease” in freshwater fish and poses a significant threat to global freshwater aquaculture. Eliminating the free-swimming theront stage from the aquaculture environment is a critical measure for controlling I. multifiliis infections. The natural predator of I. multifiliis theronts in fish-farming ponds were identified using fluorescent dye-labelled live theronts and quantitative PCR; meanwhile, the zooplankton community composition in the positive ponds of I. multifiliis detected by quantitative PCR were analyzed by eDNA metabarcoding assay. The results revealed predation on theronts by cyclopoid copepods, including Cyclops vicinus, Thermocyclops taihokuensis, Cyclops sp., Thermocyclops sp., Eucyclops sp., and Mesocyclops sp. from the in-situ predation aquatic ecosystem, and among these copepods, C. vicinus was identified as a natural dominant predator of I. multifiliis. This study provides a scientific basis for further exploration and utilization of natural predators to enhance sustainable and environmentally friendly control strategies against I. multifiliis. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

21 pages, 2868 KiB  
Review
Centriole Translational Planar Polarity in Monociliated Epithelia
by Antoine Donati, Sylvie Schneider-Maunoury and Christine Vesque
Cells 2024, 13(17), 1403; https://doi.org/10.3390/cells13171403 - 23 Aug 2024
Viewed by 1535
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the [...] Read more.
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left–right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process. Full article
Show Figures

Figure 1

10 pages, 4859 KiB  
Article
Predation of Cyclopoid Copepods on the Theronts of Ichthyophthirius multifiliis: Shedding Light on Biocontrol of White Spot Disease
by Ze-Yi Cao, Bing-Wen Xi, Qing-Jie Zhou, Kai Chen and Jun Xie
Pathogens 2023, 12(7), 860; https://doi.org/10.3390/pathogens12070860 - 22 Jun 2023
Cited by 3 | Viewed by 3437
Abstract
White spot disease, caused by the parasitic ciliate Ichthyophthirius multifiliis, is a significant threat to the freshwater fish farming industry worldwide, resulting in massive mortality and economic losses. Eliminating the free-swimming theronts from the culture environment is considered crucial for the control [...] Read more.
White spot disease, caused by the parasitic ciliate Ichthyophthirius multifiliis, is a significant threat to the freshwater fish farming industry worldwide, resulting in massive mortality and economic losses. Eliminating the free-swimming theronts from the culture environment is considered crucial for the control of I. multifiliis infection. It is well-documented that planktonic ciliates are valuable food resources for macro-zooplankton in aquatic ecosystems. In this study, we developed a fluorescence labeling method for alive theronts and found that cyclopoid copepods Thermocyclops taihokuensis, Mesocyclops spp., Macrocyclops sp., and Paracyclopina sp. present predation on the theronts in co-culture experiments. Laboratory challenge tests further confirmed that the presence of zooplankton in the culture water body significantly reduced the infection of I. multifiliis in goldfish (p < 0.01). Results from this study revealed that cyclopoid copepods have the potential to be used as biological control agents against white spot disease in aquaculture. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Purposely Development of the Adaptive Potential of Activated Sludge from Municipal Wastewater Treatment Plant Focused on the Treatment of Landfill Leachate
by Mihaela Belouhova, Ivaylo Yotinov, Irina Schneider, Nora Dinova, Yovana Todorova, Valentina Lyubomirova, Veronika Mihaylova, Elmira Daskalova, Stilyana Lincheva and Yana Topalova
Processes 2022, 10(3), 460; https://doi.org/10.3390/pr10030460 - 24 Feb 2022
Cited by 7 | Viewed by 3325
Abstract
Biological treatment is a key technology in landfill leachate treatment However, often its efficiency is not high enough due to the pollutants in concentrations above the critical ones. The present study aimed to investigate the adaptive responses that occur in activated sludge (AS) [...] Read more.
Biological treatment is a key technology in landfill leachate treatment However, often its efficiency is not high enough due to the pollutants in concentrations above the critical ones. The present study aimed to investigate the adaptive responses that occur in activated sludge (AS) during landfill leachate purification. A model process with AS from a municipal wastewater treatment plant and landfill leachate in increasing concentrations was constructed. The data showed that when dilutions 25 and 50 times had been applied the structure of the AS was preserved, but the COD cannot be reduced below 209 mg O2/L. The feed of undiluted leachate destroyed the AS structure as SVI was reduced to 1 mL/g, biotic index to 1, floc size was greatly reduced and COD remained high (2526 mg O2/L). The dominant group of protozoa was changed from attached to free-swimming ciliates. An increase of the bacterial groups responsible for the xenobiotics elimination (aerobic heterotrophs, genera Pseudomonas, Acinetobacter, Azoarcus, Thauera, Alcaligenes) was registered. This was accompanied by a significant increase in free bacteria. The obtained data showed that for optimal treatment of this type of water it is necessary to include a combination of biological treatment with another non-biological method (membrane filtration, reverse osmosis, etc.). Full article
Show Figures

Figure 1

Back to TopTop