Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = free-form façade elements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8226 KB  
Article
Improving Blast Performance of Reinforced Concrete Panels Using Sacrificial Cladding with Hybrid-Multi Cell Tubes
by Mahmoud Abada, Ahmed Ibrahim and S.J. Jung
Modelling 2021, 2(1), 149-165; https://doi.org/10.3390/modelling2010008 - 7 Mar 2021
Cited by 13 | Viewed by 4531
Abstract
The utilization of sacrificial layers to strengthen civilian structures against terrorist attacks is of great interest to engineering experts in structural retrofitting. The sacrificial cladding structures are designed to be attached to the façade of structures to absorb the impact of the explosion [...] Read more.
The utilization of sacrificial layers to strengthen civilian structures against terrorist attacks is of great interest to engineering experts in structural retrofitting. The sacrificial cladding structures are designed to be attached to the façade of structures to absorb the impact of the explosion through the facing plate and the core layer progressive plastic deformation. Therefore, blast load striking the non-sacrificial structure could be attenuated. The idea of this study is to construct a sacrificial cladding structure from multicellular hybrid tubes to protect the prominent bearing members of civil engineering structures from blast hazard. The hybrid multi-cell tubes utilized in this study were out of staking composite layers (CFRP) around thin-walled tubes; single, double, and quadruple (AL) thin-walled tubes formed a hybrid single cell tube (H-SCT), a hybrid double cell tube (H-DCT), and a hybrid quadruple cell tube (H-QCT). An unprotected reinforced concrete (RC) panel under the impact of close-range free air blast detonation was selected to highlight the effectiveness of fortifying structural elements with sacrificial cladding layers. To investigate the proposed problem, Eulerian–Lagrangian coupled analyses were conducted using the explicit finite element program (Autodyn/ANSYS). The numerical models’ accuracy was validated with available blast testing data reported in the literature. Numerical simulations showed a decent agreement with the field blast test. The proposed cladding structures with different core topologies were applied to the unprotected RC slabs as an effective technique for blast loading mitigation. Mid-span deflection and damage patterns of the RC panels were used to evaluate the blast behavior of the structures. Cladding structure achieved a desired protection for the RC panel as the mid-span deflection decreased by 62%, 78%, and 87% for H-SCT, H-DCT, and H-QCT cores, respectively, compared to the unprotected panels. Additionally, the influence of the skin plate thickness on the behavior of the cladding structure was investigated. Full article
(This article belongs to the Special Issue Advances in Structure Mechanics and Finite Element Modelling)
Show Figures

Figure 1

15 pages, 11121 KB  
Article
Development of Sustainable Production Technology of Free-Form Concrete Panels Using a Multi-Point Press CNC Machine
by Sunkuk Kim, Seunghyun Son and Donghoon Lee
Sustainability 2021, 13(4), 1990; https://doi.org/10.3390/su13041990 - 12 Feb 2021
Cited by 11 | Viewed by 3360
Abstract
Maintaining shape accuracy in the production of concrete panels of free-form buildings is time-consuming and costly. In addition, disposable molds used for free-form panels are not sustainable. Such problems can be solved by developing a suitable computerized numeric control (CNC) machine that can [...] Read more.
Maintaining shape accuracy in the production of concrete panels of free-form buildings is time-consuming and costly. In addition, disposable molds used for free-form panels are not sustainable. Such problems can be solved by developing a suitable computerized numeric control (CNC) machine that can produce an accurately shaped reusable form for free-form concrete materials in a short period of time. This project develops a production technology of quality free-form concrete panels using a CNC machine and verifies the shape quality through an experiment. We designed a multi-point press CNC machine and verified its quality. The CNC machine implements a smooth free-form shape by changing the shape of the silicon plate by movement of the rods. The silicone plate for the CNC machine generates a slight error due to the elastic cover and mechanical clearance. The mean error rate was within 3%, based on the thickness of the panels, at the 95% confidence level. Verification of these errors will provide meaningful information to a similar type of machine development. In addition, the project results will be helpful in technological development for the production of free-form concrete panels of uniform quality, whose shape accuracy is not influenced by the skills and competence of the workers producing the panels. Full article
(This article belongs to the Special Issue Technology Innovation in Construction)
Show Figures

Figure 1

13 pages, 4726 KB  
Article
Influence of Foundation Quality on the Stress in the Elements of Steel Façade Scaffolding
by Ewa Błazik-Borowa, Paulina Jamińska-Gadomska and Michał Pieńko
Buildings 2020, 10(7), 130; https://doi.org/10.3390/buildings10070130 - 13 Jul 2020
Cited by 10 | Viewed by 4838
Abstract
The purpose of this paper is to show the influence of incorrect scaffolding foundations on the stress in their elements. Static stress analysis was performed for exemplary steel façade scaffolding. The scaffolding was formed using the Plettac 70 system and was composed of [...] Read more.
The purpose of this paper is to show the influence of incorrect scaffolding foundations on the stress in their elements. Static stress analysis was performed for exemplary steel façade scaffolding. The scaffolding was formed using the Plettac 70 system and was composed of 16 modules and 13 working levels. The total dimensions of the scaffolding were 45.0 × 26.36 × 0.74 m. The scaffolding was set up partly on concrete and partly on a created ground classified as coarse sand with discontinuous graining. The boundary conditions modelling the foundation considered the heterogeneity of the ground both along the scaffolding and in the direction perpendicular to the façade. The effect of uneven subsidence on the scaffolding frames was checked, adopting a constant stiffness of 3500 kN/m in half of the supports, while in the rest of them the stiffness varied from 35 to 3500 kN/m. Due to additional bending moments, normal stresses in stands and transoms of the frames increased. Incorrect scaffolding foundation has the greatest negative effect on normal forces in anchors and bracings. Because these elements are responsible for the stability of the scaffolding, their damage may result in scaffolding failure and would certainly lead to a reduction of the values of free vibration frequencies, thus resulting in the discomfort of the workers on the scaffolding and a lack of safety. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 37488 KB  
Article
Parametric Creative Design of Building Free-Forms Roofed with Transformed Shells Introducing Architect’s and Civil Engineer’s Responsible Artistic Concepts
by Jacek Abramczyk and Aleksandra Prokopska
Buildings 2019, 9(3), 58; https://doi.org/10.3390/buildings9030058 - 6 Mar 2019
Cited by 6 | Viewed by 7983
Abstract
The article concerns a parametric description of unconventional building forms roofed with folded sheeting transformed elastically into shells. The description supports the designer in the search for attractive forms and a rational use of materials. The adoption of strictly defined sets of initial [...] Read more.
The article concerns a parametric description of unconventional building forms roofed with folded sheeting transformed elastically into shells. The description supports the designer in the search for attractive forms and a rational use of materials. The adoption of strictly defined sets of initial parameters determines the diversification of the designed architectural free-forms. An impact of selected proportions between these parameters on these forms is illustrated by an example of a single structure. Folded elevations and a segmented shell roof make each such structure internally coherent and externally sensitive. The mutual position and proportions of the shape of all elements, such as the roof, eaves, and façades, along with regular patterns in the same structure, determine this consistency of its form and sensitivity to harmonious incorporation into the natural or built environments. The study is a new insight into shaping free-forms of buildings in which the modern and ecological materials determine the important shape and mechanical limitations of these forms. With a skillful approach, the materials allow their extensive use in buildings. However, various interdisciplinary problems related to architectural shaping of free-forms and static and strength work thin-walled shell sheeting roofs must be solved. For effective design it is necessary to use relevant software applications, where spatial reasoning is crucial for ordering the three-dimensional space by means of simplified engineering models. Full article
(This article belongs to the Special Issue Responsive Architecture)
Show Figures

Figure 1

Back to TopTop