Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = four-wire p-q theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 28072 KB  
Article
Four-Wire Three-Level NPC Shunt Active Power Filter Using Model Predictive Control Based on the Grid-Tied PV System for Power Quality Enhancement
by Zoubida Amrani, Abdelkader Beladel, Abdellah Kouzou, Jose Rodriguez and Mohamed Abdelrahem
Energies 2024, 17(15), 3822; https://doi.org/10.3390/en17153822 - 2 Aug 2024
Cited by 2 | Viewed by 1970
Abstract
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the [...] Read more.
The primary objective of this paper focuses on developing a control approach to improve the operational performance of a three-level neutral point clamped (3LNPC) shunt active power filter (SAPF) within a grid-tied PV system configuration. Indeed, this developed control approach, based on the used 3LNPC-SAPF topology, aims to ensure the seamless integration of a photovoltaic system into the three-phase four-wire grid while effectively mitigating grid harmonics, grid current unbalance, ensuring grid unit power factor by compensating the load reactive power, and allowing power sharing with the grid in case of an excess of generated power from the PV system, leading to overall high power quality at the grid side. This developed approach is based initially on the application of the four-wire instantaneous p-q theory for the identification of the reference currents that have to be injected by the 3LNPC-SAPF in the grid point of common coupling (PCC). Whereas, the 3LNPC is controlled based on using the finite control set model predictive control (FCS-MPC), which can be accomplished by determining the convenient set of switch states leading to the voltage vector, which is the most suitable to ensure the minimization of the selected cost function. Furthermore, the used topology requires a constant DC-link voltage and balanced split-capacitor voltages at the input side of the 3LNPN. Hence, the cost function is adjusted by the addition of another term with a selected weighting factor related to these voltages to ensure their precise control following the required reference values. However, due to the random changes in solar irradiance and, furthermore, to ensure efficient operation of the proposed topology, the PV system is connected to the 3LNPN-SAPF via a DC/DC boost converter to ensure the stability of the 3LNPN input voltage within the reference value, which is achieved in this paper based on the use of the maximum power point tracking (MPPT) technique. For the validation of the proposed control technique and the functionality of the used topology, a set of simulations has been presented and investigated in this paper following different irradiance profile scenarios such as a constant irradiance profile and a variables irradiance profile where the main aim is to prove the effectiveness and flexibility of the proposed approach under variable irradiance conditions. The obtained results based on the simulations carried out in this study demonstrate that the proposed control approach with the used topology under different loads such as linear, non-linear, and unbalanced can effectively reduce the harmonics, eliminating the unbalance in the currents and compensating for the reactive component contained in the grid side. The obtained results prove also that the proposed control ensures a consistent flow of power based on the sharing principle between the grid and the PV system as well as enabling the efficient satisfaction of the load demand. It can be said that the proposal presented in this paper has been proven to have many dominant features such as the ability to accurately estimate the power sharing between the grid and the PV system for ensuring the harmonics elimination, the reactive power compensation, and the elimination of the neutral current based on the zero-sequence component compensation, even under variable irradiance conditions. This feature makes the used topology and the developed control a valuable tool for power quality improvement and grid stability enhancement with low cost and under clean energy. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 2560 KB  
Article
Application of Deep Learning Gated Recurrent Unit in Hybrid Shunt Active Power Filter for Power Quality Enhancement
by Ayesha Ali, Ateeq Ur Rehman, Ahmad Almogren, Elsayed Tag Eldin and Muhammad Kaleem
Energies 2022, 15(20), 7553; https://doi.org/10.3390/en15207553 - 13 Oct 2022
Cited by 13 | Viewed by 2663
Abstract
This research work aims at providing power quality improvement for the nonlinear load to improve the system performance indices by eliminating maximum total harmonic distortion (THD) and reducing neutral wire current. The idea is to integrate a shunt hybrid active power filter (SHAPF) [...] Read more.
This research work aims at providing power quality improvement for the nonlinear load to improve the system performance indices by eliminating maximum total harmonic distortion (THD) and reducing neutral wire current. The idea is to integrate a shunt hybrid active power filter (SHAPF) with the system using machine learning control techniques. The system proposed has been evaluated under an artificial neural network (ANN), gated recurrent unit, and long short-term memory for the optimization of the SHAPF. The method is based on the detection of harmonic presence in the power system by testing and comparison of traditional pq0 theory and deep learning neural networks. The results obtained through the proposed methodology meet all the suggested international standards of THD. The results also satisfy the current removal from the neutral wire and deal efficiently with minor DC voltage variations occurring in the voltage-regulating current. The proposed algorithms have been evaluated on the performance indices of accuracy and computational complexities, which show effective results in terms of 99% accuracy and computational complexities. deep learning-based findings are compared based on their root-mean-square error (RMSE) and loss function. The proposed system can be applied for domestic and industrial load conditions in a four-wire three-phase power distribution system for harmonic mitigation. Full article
Show Figures

Figure 1

Back to TopTop