Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = fluorogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3327 KB  
Article
A Photoalkylative Fluorogenic Probe of Guttiferone A for Live Cell Imaging and Proteome Labeling in Plasmodium falciparum
by Romain Duval, Kevin Cottet, Magali Blaud, Anaïs Merckx, Sandrine Houzé, Philippe Grellier, Marie-Christine Lallemand and Sylvie Michel
Molecules 2020, 25(21), 5139; https://doi.org/10.3390/molecules25215139 - 4 Nov 2020
Cited by 5 | Viewed by 3208
Abstract
Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed [...] Read more.
Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed and evaluated a natural product-derived photoactivatable probe AZC-GA 5, embedding a photoalkylative fluorogenic motif of the 7-azidocoumarin (AZC) type, devoted to studying the affinity proteins interacting with GA in Plasmodium falciparum. Probe 5 manifested a number of positive functional and biological features, such as (i) inhibitory activity in vitro against P. falciparum blood-stages that was superimposable to that of GA 1, dose–response photoalkylative fluorogenic properties (ii) in model conditions using bovine serum albumin (BSA) as an affinity protein surrogate, (iii) in live P. falciparum-infected erythrocytes, and (iv) in fresh P. falciparum cell lysate. Fluorogenic signals by photoactivated AZC-GA 5 in biological settings were markedly abolished in the presence of excess GA 1 as a competitor, indicating significant pharmacological specificity of the designed molecular probe relative to the native PPAP. These results open the way to identify the detected plasmodial proteins as putative drug targets for the natural product 1 by means of proteomic analysis. Full article
(This article belongs to the Special Issue Chemical Probe Synthesis and Applications in Chemical Biology)
Show Figures

Figure 1

9 pages, 1656 KB  
Article
Radio-Fluorogenic Gel Dosimetry with Coumarin
by Peter A. Sandwall, Brandt P. Bastow, Henry B. Spitz, Howard R. Elson, Michael Lamba, William B. Connick and Henry Fenichel
Bioengineering 2018, 5(3), 53; https://doi.org/10.3390/bioengineering5030053 - 10 Jul 2018
Cited by 22 | Viewed by 6816
Abstract
Gel dosimeters are attractive detectors for radiation therapy, with properties similar to biological tissue and the potential to visualize volumetric dose distributions. Radio-fluorogenesis is the yield of fluorescent chemical products in response to energy deposition from ionizing radiation. This report shares the development [...] Read more.
Gel dosimeters are attractive detectors for radiation therapy, with properties similar to biological tissue and the potential to visualize volumetric dose distributions. Radio-fluorogenesis is the yield of fluorescent chemical products in response to energy deposition from ionizing radiation. This report shares the development of a novel radio-fluorogenic gel (RFG) dosimeter, gelatin infused with coumarin-3-carboxlyic acid (C3CA), for the quantification of imparted energy. Aqueous solutions exposed to ionizing radiation result in the production of hydroxyl free radicals through water radiolysis. Interactions between hydroxyl free radicals and coumarin-3-carboxylic acid produce a fluorescent product. 7-hydroxy-coumarin-3-carboxylic acid has a blue (445 nm) emission following ultra-violet (UV) to near UV (365–405 nm) excitation. Effects of C3CA concentration and pH buffers were investigated. The response of the RFG was explored with respect to strength, type, and exposure rate of high-energy radiation. Results show a linear dose response relationship independent of energy and type, with a dose-rate dependency. This report demonstrates increased photo-yield with high pH and the utility of gelatin-RFG for phantom studies of radiation dosimetry. Full article
(This article belongs to the Special Issue Bioengineering Nano and Micro-Gels for Biomedical Applications)
Show Figures

Figure 1

Back to TopTop