Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = fluorescein decay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3384 KiB  
Article
A Kinetic Approach to Oxygen Radical Absorbance Capacity (ORAC): Restoring Order to the Antioxidant Activity of Hydroxycinnamic Acids and Fruit Juices
by Umme Asma, Maria Letizia Bertotti, Simone Zamai, Marcellus Arnold, Riccardo Amorati and Matteo Scampicchio
Antioxidants 2024, 13(2), 222; https://doi.org/10.3390/antiox13020222 - 9 Feb 2024
Cited by 14 | Viewed by 4545
Abstract
This study introduces a kinetic model that significantly improves the interpretation of the oxygen radical absorbance capacity (ORAC) assay. Our model accurately simulates and fits the bleaching kinetics of fluorescein in the presence of various antioxidants, achieving high correlation values (R2 > [...] Read more.
This study introduces a kinetic model that significantly improves the interpretation of the oxygen radical absorbance capacity (ORAC) assay. Our model accurately simulates and fits the bleaching kinetics of fluorescein in the presence of various antioxidants, achieving high correlation values (R2 > 0.99) with the experimental data. The fit to the experimental data is achieved by optimizing two rate constants, k5 and k6. The k5 value reflects the reactivity of antioxidants toward scavenging peroxyl radicals, whereas k6 measures the ability of antioxidants to regenerate oxidized fluorescein. These parameters (1) allow the detailed classification of cinnamic acids based on their structure–activity relationships, (2) provide insights into the interaction of alkoxyl radicals with fluorescein, and (3) account for the regeneration of fluorescein radicals by antioxidants. The application of the model to different antioxidants and fruit extracts reveals significant deviations from the results of traditional ORAC tests based on the area under the curve (AUC) approach. For example, lemon juice, rich in ‘fast’ antioxidants such as ascorbic acid, shows a high k5 value, in contrast to its low AUC values. This finding underscores the limitations of the AUC approach and highlights the advantages of our kinetic model in understanding antioxidative dynamics in food systems. This study presents a comprehensive, quantitative, mechanism-oriented approach to assessing antioxidant reactivity, demonstrating a significant improvement in ORAC assay applications. Full article
Show Figures

Figure 1

17 pages, 13240 KiB  
Article
Corneal Edema in Inducible Slc4a11 Knockout Is Initiated by Mitochondrial Superoxide Induced Src Kinase Activation
by Diego G. Ogando, Edward T. Kim, Shimin Li and Joseph A. Bonanno
Cells 2023, 12(11), 1528; https://doi.org/10.3390/cells12111528 - 1 Jun 2023
Cited by 4 | Viewed by 2868
Abstract
Purpose: Inducible Slc4a11 KO leads to corneal edema by disruption of the pump and barrier functions of the corneal endothelium (CE). The loss of Slc4a11 NH3-activated mitochondrial uncoupling leads to mitochondrial membrane potential hyperpolarization-induced oxidative stress. The goal of this study [...] Read more.
Purpose: Inducible Slc4a11 KO leads to corneal edema by disruption of the pump and barrier functions of the corneal endothelium (CE). The loss of Slc4a11 NH3-activated mitochondrial uncoupling leads to mitochondrial membrane potential hyperpolarization-induced oxidative stress. The goal of this study was to investigate the link between oxidative stress and the failure of pump and barrier functions and to test different approaches to revert the process. Methods: Mice which were homozygous for Slc4a11 Flox and Estrogen receptor –Cre Recombinase fusion protein alleles at 8 weeks of age were fed Tamoxifen (Tm)-enriched chow (0.4 g/Kg) for 2 weeks, and controls were fed normal chow. During the initial 14 days, Slc4a11 expression, corneal thickness (CT), stromal [lactate], Na+-K+ ATPase activity, mitochondrial superoxide levels, expression of lactate transporters, and activity of key kinases were assessed. In addition, barrier function was assessed by fluorescein permeability, ZO-1 tight junction integrity, and cortical cytoskeleton F-actin morphology. Results: Tm induced a rapid decay in Slc4a11 expression that was 84% complete at 7 days and 96% complete at 14 days of treatment. Superoxide levels increased significantly by day 7; CT and fluorescein permeability by day 14. Tight junction ZO-1 distribution and the cortical cytoskeleton were disrupted at day 14, concomitant with decreased expression of Cldn1, yet with increased tyrosine phosphorylation. Stromal lactate increased by 60%, Na+-K+ ATPase activity decreased by 40%, and expression of lactate transporters MCT2 and MCT4 significantly decreased, but MCT1 was unchanged at 14 days. Src kinase was activated, but not Rock, PKCα, JNK, or P38Mapk. Mitochondrial antioxidant Visomitin (SkQ1, mitochondrial targeted antioxidant) and Src kinase inhibitor eCF506 significantly slowed the increase in CT, with concomitant decreased stromal lactate retention, improved barrier function, reduced Src activation and Cldn1 phosphorylation, and rescued MCT2 and MCT4 expression. Conclusions: Slc4a11 KO-induced CE oxidative stress triggered increased Src kinase activity that resulted in perturbation of the pump components and barrier function of the CE. Full article
(This article belongs to the Special Issue Cell Biology of the Cornea and Ocular Surface)
Show Figures

Graphical abstract

14 pages, 1387 KiB  
Article
Exploiting Kinetic Features of ORAC Assay for Evaluation of Radical Scavenging Capacity
by Joana R. B. Carvalho, Andreia N. Meireles, Sara S. Marques, Bruno J. R. Gregório, Inês I. Ramos, Eduarda M. P. Silva, Luisa Barreiros and Marcela A. Segundo
Antioxidants 2023, 12(2), 505; https://doi.org/10.3390/antiox12020505 - 17 Feb 2023
Cited by 22 | Viewed by 6011
Abstract
The analysis and interpretation of data retrieved from Oxygen Radical Absorbance Capacity (ORAC) assays represent a challenging task. ORAC indexes originate from different mathematical approaches often lacking correct elucidation of kinetic features concerning radical scavenging reactions by antioxidant compounds. In this work, the [...] Read more.
The analysis and interpretation of data retrieved from Oxygen Radical Absorbance Capacity (ORAC) assays represent a challenging task. ORAC indexes originate from different mathematical approaches often lacking correct elucidation of kinetic features concerning radical scavenging reactions by antioxidant compounds. In this work, the expression of ORAC values as area under fluorescein (FL) decay curves (AUC) and lag time are critically compared. This multi-parametric analysis showed the extension of radical scavenging reactions beyond the lag time period for caffeic acid, gallic acid, reduced glutathione and quercetin, extending their antioxidant protection of FL. Ethanol delayed the reaction of both FL and antioxidant compounds with free radical species generated from 2,2′-azobis(2-amidinopropane) dihydrochloride thermolysis. Trolox equivalent values, commonly used to express ORAC values, were more affected by the differences in radical scavenging kinetics between the reference and the tested antioxidant compounds when calculated from AUC than from lag time. These findings stressed the importance of choosing calibrator compounds presenting ORAC kinetics similar to samples to prevent biased estimation of the antioxidant capacity. Additionally, the framework proposed here provides a sustainable analytical method for the evaluation of antioxidant capacity, with an AGREE score of 0.73. Full article
Show Figures

Graphical abstract

Back to TopTop