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Abstract: Purpose: Inducible Slc4a11 KO leads to corneal edema by disruption of the pump and
barrier functions of the corneal endothelium (CE). The loss of Slc4a11 NH3-activated mitochondrial
uncoupling leads to mitochondrial membrane potential hyperpolarization-induced oxidative stress.
The goal of this study was to investigate the link between oxidative stress and the failure of pump
and barrier functions and to test different approaches to revert the process. Methods: Mice which
were homozygous for Slc4a11 Flox and Estrogen receptor –Cre Recombinase fusion protein alleles
at 8 weeks of age were fed Tamoxifen (Tm)-enriched chow (0.4 g/Kg) for 2 weeks, and controls
were fed normal chow. During the initial 14 days, Slc4a11 expression, corneal thickness (CT),
stromal [lactate], Na+-K+ ATPase activity, mitochondrial superoxide levels, expression of lactate
transporters, and activity of key kinases were assessed. In addition, barrier function was assessed by
fluorescein permeability, ZO-1 tight junction integrity, and cortical cytoskeleton F-actin morphology.
Results: Tm induced a rapid decay in Slc4a11 expression that was 84% complete at 7 days and
96% complete at 14 days of treatment. Superoxide levels increased significantly by day 7; CT and
fluorescein permeability by day 14. Tight junction ZO-1 distribution and the cortical cytoskeleton
were disrupted at day 14, concomitant with decreased expression of Cldn1, yet with increased
tyrosine phosphorylation. Stromal lactate increased by 60%, Na+-K+ ATPase activity decreased by
40%, and expression of lactate transporters MCT2 and MCT4 significantly decreased, but MCT1
was unchanged at 14 days. Src kinase was activated, but not Rock, PKCα, JNK, or P38Mapk.
Mitochondrial antioxidant Visomitin (SkQ1, mitochondrial targeted antioxidant) and Src kinase
inhibitor eCF506 significantly slowed the increase in CT, with concomitant decreased stromal lactate
retention, improved barrier function, reduced Src activation and Cldn1 phosphorylation, and rescued
MCT2 and MCT4 expression. Conclusions: Slc4a11 KO-induced CE oxidative stress triggered
increased Src kinase activity that resulted in perturbation of the pump components and barrier
function of the CE.

Keywords: corneal endothelial dystrophy; Slc4a11; barrier function; lactate transporters; Src kinase;
oxidative stress; Visomitin

1. Introduction

Homozygous and compound heterozygous mutations in Solute Linked Cotransporter
A11 (SLC4A11) cause congenital hereditary endothelial dystrophy (CHED) [1], which is
marked by corneal edema and eventual endothelial cell death in early childhood. SLC4A11
is an NH3-sensitive electrogenic H+ transporter localized to the basolateral membrane and
the inner mitochondrial membrane of corneal endothelial cells [2–4]. Basolateral plasma
membrane SLC4A11 is postulated to contribute to the corneal endothelial pump function
by an H+ buffering mechanism that enhances lactate transport [5,6]. More significantly,
inner mitochondrial membrane SLC4A11 is an NH3-sensitive mitochondrial uncoupler
that is activated by glutamine (Gln) catabolism [7,8]. Gln enters the tricarboxylic acid cycle,
yielding a significant increase in reducing potential that drives the electron transport chain
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and ATP production. Slc4a11 provides a mild uncoupling, preventing mitochondrial mem-
brane potential (MMP) hyperpolarization, which suppresses superoxide production [3]. In
Slc4a11-deficient mouse corneal endothelial cells, Gln hyperpolarizes mitochondria, increas-
ing superoxide and opening the permeability transition pore [5], which depolarizes MMP
and induces apoptosis [3]. Inhibiting superoxide production by reducing ammonia pro-
duction and treating with a mitochondrial uncoupler or direct mitochondrial antioxidant
treatment prevented cell death in the presence of glutamine, indicating that mitochondrial
superoxide production was the primary factor in inducing cell death [3,9].

In conventional Slc4a11 KO mice, corneal edema is observed early (<12 weeks of
age) with mild changes in cell morphology, yet there is no significant difference in corneal
endothelial cell density compared to wild-type mice [10,11]. However, at older ages,
cell morphology becomes more aberrant and cell density significantly decreases in the
KO [10,11]. In Slc4a11 KO mice, the gene is null during embryonic development and
edema is present at eye-opening, which precludes uncovering the sequence of early events
leading to edema. To circumvent this problem, we generated an inducible Slc4a11 KO
mouse model that recapitulates the conventional KO phenotype over time [12]. In addition
to mitochondrial superoxide production, there are losses in Na+-K+ ATPase activity and
expression of key lactate transporters (monocarboxylate cotransporter, MCTs) in this KO.
Moreover, the changes in cell morphology were concomitant with disruption of the barrier
function and alteration of the tight junction and cortical cytoskeleton structures [12].

The goal of the current study was to investigate the earliest events within corneal
endothelial cells that ultimately lead to edema. Our working hypothesis is that mitochon-
drial oxidative stress is the initial trigger that leads to alterations in gene expression, cell
morphology, and permeability, resulting in corneal edema and eventual cell death. Fol-
lowing induction of Slc4a11 KO, corneal thickness was continually measured, and stromal
[lactate], endothelial mitoROS, lactate transporter (MCTs) and Na+-K+ ATPase expression
were measured at selected time points. Since oxidative stress is known to activate Rho
Kinase (Rock) and p38MAP Kinase, which mediate disruption of the barrier function in
corneal endothelial cells in vitro [13], and since in other cell types, alteration of the cell
junctions is mediated by the c-Src, PKCα, and JNK kinases [14–18], we examined a panel of
kinase expression and phosphorylation status.

2. Materials and Methods
2.1. Drugs

All drugs, i.e., Visomitin, #HY-100474; eCF506, #HY-112096; and Ripasudil, #HY-15685,
were obtained from MedChemExpress (Monmouth Junction, NJ, USA).

2.2. Mice and Therapies

The generation of the inducible Slc4a11 KO mouse was described previously [12].
Slc4a11 Flox/Flox mice were generated by Ozgene (Indianapolis, IN, USA) [10]. Cre-
ERT2 mice (Stock No: 008463) were obtained from Jackson Laboratories (Bar Harbor, ME,
USA). In this strain, ubiquitous Cre-ERT2 expression is directed by a strong promoter.
Slc4a11Flox/Flox//RosaCreERT2/CreERT2 mice, at 8 weeks of age, were fed with Tamoxifen (Tm)-
enriched chow (0.4 g/kg, Envigo #TD130859, Indianapolis, IN, USA) for two weeks, fol-
lowed by normal chow. Whole-body Slc4a11 KO is expected in this model. The genotyping
procedures for Slc4a11 flox and for CreERT2 alleles were described previously [12]. The
non-specific effects of Tamoxifen on corneal thickness were insignificant [12]. Central
corneal thickness was measured by optical coherence tomography (iVue100 Optovue,
Inc., Fremont, CA, USA) as described in detail previously [12]. Eye drop therapy was
performed as follows: using Visomitin (SkQ1) 1.5 µM in PBS and eCF506 1 µM in PBS
or PBS, 10 µL drops were applied thrice/day (at 9 a.m., 1 p.m., 5 p.m.) in both eyes to
Slc4a11Flox/Flox//CreERT2/CreERT2 mice at 8 weeks of age, starting at the same time as
Tamoxifen feeding. In addition, central corneal thickness was measured prior to and at
14 days of treatment. Mice were euthanized by inhalation of carbon dioxide followed
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by cervical dislocation at different time points, and corneas were obtained for analysis.
Using both OCT and slit-lamp examination, no corneal ulcers, surface defects, or inflamma-
tion were observed in any of the groups of mice. All mice were housed in pathogen-free
conditions and used in the experiments in accordance with institutional guidelines and
the current regulations of the National Institutes of Health, the United States Department
of Agriculture, and the Association for Research in Vision and Ophthalmology (ARVO)
Statement for the Use of Animals in Ophthalmic and Vision Research. All experiments
involving mice were conducted in accord with our approved IACUC protocol from Indiana
University Bloomington, as was the number of mice used.

2.3. QPCR

QPCR was performed as described previously [12]. Briefly, corneal endothelium-
Descemet’s membrane (CEDM) was dissected from whole corneas using jeweler’s forceps
from three mice, which were pooled to obtain one sample. Three Ctrl and three Tm samples
were subjected to QPCR. Slc4a11 primers: forward: CTGTGAGGTTCGCTTTGT; reverse:
GTGCCAGTCTTCAGGAGC. Beta actin primers: CTAAGGCCAACCGTGAAA; reverse:
ACCAGAGGCATACAGGGA.

2.4. Stromal Lactate

Corneas were obtained, and the epithelium and endothelium were removed. Individ-
ual stromas were placed in pre-weighed Eppendorf tubes, pulverized in liquid nitrogen,
and homogenized in 30 µL of PBS using a plastic disposable pestle. The sample was
centrifuged at 15,000× g for 15 min at 4 ◦C. The supernatant was recovered. The remaining
pellet was dried at 60 ◦C in a vacuum centrifuge for two hours, then weighed (dry weight).
Lactate was measured in the supernatant, n ≥ 3 for Ctrl and Tm, using a fluorescent kit
(Abcam #ab65330, Cambridge, UK) according to the manufacturer’s instructions.

2.5. Endothelial Permeability Assay

Whole corneas were dissected and placed into small dimples on plates, endothelial
side up. A volume of 10 µL of 0.1% sodium fluorescein in bicarbonate-rich Ringer (BR) was
added on the endothelial side and incubated at room temperature for 30 min. The corneas
were washed thrice for five minutes each with 10 µL BR. After removing all liquid, corneas
were positioned in wells of a 96-well plate, and fluorescence (excitation: 485 nm, emission:
520 nm) was measured in a microplate reader. As a positive control (n ≥ 3 for Ctrl and
Tm), corneas were incubated for one hour with 10 µL EGTA 2 mM in Ca-free PBS before
incubation in fluorescein.

2.6. Na+-K+ ATPase Activity

Two corneal endothelial-Descemet membrane (CEDM) peelings from the same mouse
were pooled and homogenized in 30 µL assay buffer, provided in the ATPase Assay kit
(Abcam #ab234055), using a plastic disposable pestle. After sonication, the sample was
centrifugated at 10,000× g for 10 min at 4 ◦C. The supernatant was recovered, and the
phosphates in the sample were depleted by incubation in 40 µL of PiBind resin (Innova
Biosciences #501-0015, Montluçon, France) for 15 min at room temperature in a rotary
device. After centrifugation at 1000× g for two minutes, the sample was recovered, and
ATPase activity was measured in 5 µL of sample in the presence or absence of 1 mM
ouabain. Na+-K+ ATPase activity (n ≥ 3 for Ctrl and Tm) was obtained by subtracting
the activity in presence of ouabain from the total activity. Protein was measured using the
BCA method.

2.7. Mitochondrial Superoxide

Following euthanasia, corneas were dissected, maintained in Hanks Balanced Salt
Solution at 37 ◦C, and stained with MitoSOX (Thermo Fisher Scientific #M36008, Waltham,
MA, USA) 1 µM in HBSS for 30 min at 37 ◦C, then washed 3 times for 5 min in HBSS.
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To facilitate the identification of the endothelial cells, nuclei were stained with Hoechst
1 µg/mL for 10 min at room temperature and then washed 3 times for 5 min in HBSS.
Corneas were flattened by performing 4 relaxing cuts, then positioned with the endothelial
surface facing down in a glass-bottom Petri Dish (MetTek #P35G-1.5-20-C, Lucknow, ON,
Canada) in 100 µL of HBSS. An 18 mm coverslip was placed over the cornea, with a
plastic weight to flatten the tissue. Images were taken with a Zeiss Axio Observer Z1
inverted microscope (Zeiss, Pleasanton, CA, USA) microscope using a 40× objective. Five
images were taken for each cornea. Using Image J, the mean fluorescence intensity of
each individual cell was obtained and then averaged per image and cornea (n = 4 for Ctrl
and Tm).

2.8. Immunofluorescence

Immunofluorescence was performed as previously described [12]. The primary anti-
body was mouse anti-ZO-1 (1:100) (Thermo Fisher Scientific #33-9100). Phalloidin-A488
(Thermo Fisher Scientific #A12379) 1× solution was used to stain F-actin.

2.9. Immunoprecipitation

Immunoprecipitation was performed following instructions from the Pierce Classic
Immunoprecipitation kit (Thermo Fisher Scientific #26146). Briefly, two CEDM from one
mouse were pooled and lysed in 30 µL of IP lysis buffer supplemented with protease
plus phosphatase inhibitors. Five µL of lysate as saved to use as input. In a spin column
provided by the kit, 25 µL of lysate was combined with 475 µL of IP lysis buffer and
pre-cleared with 20 µL of control agarose slurry for one hour at 4 ◦C in a rotary device.
The immune complex was prepared by combining the 500 µL of pre-cleared diluted lysate
with 1 µg of rabbit P-tyrosine antibody (Cell Signaling Technology #8954S, Danvers, MA,
USA), 1 µg of control rabbit IgG (Cell Signaling Technology #3900S), or 1 ug of control
mouse IgG (Cell Signaling Technology #5415S) and incubating for 18 h at 4 ◦C in a rotary
device. The immune complex was captured by incubating the antibody/lysate sample with
20 µL of protein A/G agarose slurry for one hour at 4 ◦C in a rotary device. The agarose
containing the immune complex was washed four times with 200 µL of IP lysis buffer and
once with 1× conditioning buffer supplied by the kit. The complex was eluted by adding
10 µL of 2× Mastermix from the Protein Simple Jess kit and then boiling for 10 min. After
centrifugation from 1000× g for 1 min, the eluted protein was recovered and used to run
the Western immunoassay for Cldn1 and ZO-1 (n = 3 for Ctrl and Tm), as described below.

2.10. Western Immunoassay

Two CEDM peelings from one mouse were pooled and lysed in 25 µL RIPA lysis
buffer containing protease plus phosphatase inhibitors. Protein was measured using the
BCA method. Equal amounts of protein (1.5 µg) were loaded into wells of the 12 to
230 kDa separation module of a Protein Simple Jess system (Protein Simple, San Jose,
CA, USA). Antibodies were added at the following dilutions: MCT1 (Abcam #ab90582)
1:10; MCT2 (Santa Cruz Biotechnologies #sc-166925, Santa Cruz, CA, USA) 1:10; MCT4
(Santa Cruz #sc-376465) 1:10; Atp1a1 (Abcam #ab760020) 1:10; Atp1b2 (Abcam #ab185210)
1:10; ZO-1 (Thermo Fisher Scientific #33-9100) 1:10; Cldn1 (Thermo Fisher Scientific #37-
4900) 1:10; β-catenin (Cell Signaling Technology #9582) 1:10, P(S19)-MLC (Cell Signaling
Technology #3671) 1:10; P-PKCα (Cell Signaling Technology #9375) 1:10; P-JNK (Cell
Signaling Technology #9255S) 1:10; P-P38Mapk (Cell Signaling Technology #9215S) 1:10; Src
(Cell Signaling Technology #2109) 1:50; and P-Src (Cell Signaling Technology #6943) 1:10.
Secondary antibodies and the substrate were provided by the Jess kit. For normalization,
the total protein on each lane was quantified with the Total Protein Module (Protein Simple
#DM-TP01). Jess data were obtained (n ≥ 3 for Ctrl and Tm) as virtual blots in which
molecular weight and signal intensity were presented. Results, in the form of a traditional
electropherogram, were also obtained with this approach.
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2.11. Statistical Analysis

All corneal thickness measurements had at least 5 replicates. All other assays had at
least 3 replicates. Results are presented as mean ± SEM. Statistical analysis was performed
with GraphPad 9.4 (GraphPad Software, Inc., Boston, MA, USA). For comparisons between
two groups, Student’s t-test was utilized. For three or more groups, one-way or two-way
ANOVA was performed followed by Tukey’s multiple comparison test. Significance was
defined as p < 0.05.

3. Results

To study the early events leading to corneal edema, Slc4a11 Flox/Flox//CreERT2/CreERT2
mice at 8 weeks of age were fed with tamoxifen (Tm) chow to induce Slc4a11 knock-out,
and different parameters were studied at several time points. Tm induced 84% and 96%
Slc4a11 messenger RNA knockdown in the endothelium at 7 and 14 days of Tm treatment,
respectively (Figure 1A). The corneal thickness was slightly higher at 7 days, but increased
significantly by 14 days post-Tm induction (Figure 1B). Since the underlying mechanism
of the endothelial pump was lactate-linked water flux [6], we measured corneal [lactate].
Lactate accumulation in the stroma indicates inhibition of the corneal endothelial pump
function. We found that lactate increased significantly at 7 days and remained higher than
that in the control group at 14 and 28 days of Tm induction (Figure 1C). Consistent with
pump failure, there was a 40% reduction in Na+-K+ ATPase activity at 14 days post-Tm
treatment (Figure 1D).

At 14 days, we examined the expression of Na+-K+ ATPase components and the lactate
transporter MCTs (monocarboxylate cotransporters). Whereas there was no significant
change in the expression of subunits Atp1a1 and Atp1b2 (Figure 2A,B), and no changes in
MCT1 (Figure 2C), significant decreases in MCT2 and 4 were observed (Figure 2D,E).

While the pump function consists of vectorial (stroma to anterior chamber) transport of
lactate and water, maintenance of transendothelial osmotic gradients derived from the ion
transport activity requires an intact osmotic barrier that is conferred by tight and adherens
junctions. Therefore, we examined the endothelial permeability and the protein expression
associated with barrier function. The integrity of the tight junctions (studied by ZO-1
staining) and the cortical cytoskeleton (studied by F-actin) were altered at 14 days, but
this was not noticeable at 7 days (Figure 3A). Similarly, endothelial permeability increased
at 14 days, but not at 7 days (Figure 3B). To explore potential changes in tight junction
assembly that may explain the increase in permeability, we examined the expression of
several junction proteins. As is consistent with the increased permeability at 14 days, Cldn1
levels were decreased, whereas ZO-1 levels were increased in Tm-treated mice, while
β-catenin levels were not changed (Figure 3C).

We hypothesized that a trigger for these changes in protein expression and subsequent
corneal edema was the oxidative stress caused by Slc4a11 deletion [3,19]. We observed that
mitochondrial superoxide levels increased in the Tm group after 7 days when significant
Slc4a11 knockdown occurred (Figure 4A,B). Mitochondrial superoxide levels remained
elevated at 14 days (Figure 4A,B). Thus, mitoROS production precedes the development of
corneal edema.

Several kinases have been associated with ROS-induced disruption of the barrier
function: the Rock, MLCK, PKCα, JNK, c-SRC, and p38 MAP kinases [14,17,18,20–22].
None of the ROCK, MLCK (tested by phosphorylation of MLC), PKCα, JNK, or p38
MAP kinases were activated by Tm at 14 days (Figure 5A–D). Only c-Src was activated at
14 days (Figure 5E). While ZO-1 tyrosine phosphorylation decreased in the Tm samples,
(Figure 5F), Cldn1 tyrosine phosphorylation increased (Figure 5G), although the total
expression decreased (Figure 3C).
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Figure 1. Changes in the pump function in the inducible Slc4a11 KO. (A). Time course of relative
Slc4a11 expression by QPCR in CEDM. Relative quantity ± SEM, n = 3, *: p < 0.05. (B). Corneal
thickness time course after Tm treatment; mean ± SEM, n = 5, *: p < 0.0001. (C). Stomal lactate
content; relative values versus control; mean ± SEM, n = 3, *: p < 0.05. (D). Na+-K+ ATPase activity
at 14 days of Tm treatment; mean ± SEM, n = 3 (Ctrl) and n = 5 (Tm), *: p < 0.05.

ROCK inhibitor topical therapy has been used to treat Fuchs’ endothelial corneal
dystrophy (FECD) [15]. Rho kinase activation can directly or indirectly result in MLC phos-
phorylation, leading to actomyosin contraction and disruption of the barrier function [23].
We did not find increased MLC phosphorylation in our model. However, ROCK activation
can be detrimental to the barrier and the pump function by mechanisms independent
of increasing MLC phosphorylation [24]. For example, ex vivo treatment of the corneal
endothelium with Rho kinase inhibitor Ripasudil increased the expression of proteins of the
pump and barrier function [24]. For these reasons, we tested topical treatment with Ripa-
sudil. Ripasudil eye drops thrice per day had no effect on the corneal thickness, fluorescein
permeability, tight junctions, or cortical cytoskeleton (Figure 6A–C).
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Figure 2. Lactate transporter expression was decreased in the inducible KO at 14 days of Tm treatment.
Jess immunoassays: (A). Atp1a1. (B). ATP1b2. (C). MCT1. (D). MCT2. (E). MCT4. Blue blot shows
total protein. Relative values versus control; mean ± SEM, n = 3. *: p < 0.05. ns = not significant.
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Figure 3. The tight junction and cortical cytoskeleton structure, as well as endothelial permeability,
were altered at 14 days of Tm treatment. (A). Representative images of ZO-1 and F-actin at 7 and
14 days of Tm treatment. (B). Endothelial fluorescein permeability. Relative values versus control;
mean ± SEM, n = 3, *: p < 0.01. (C). Jess immunoassay of ZO-1, Cldn1, and β-catenin. Relative values
versus control; mean ± SEM, n = 6 (ZO-1) and n = 3 (Cldn1 and β-catenin). *: p < 0.05. **: p < 0.01.
ns = not significant.
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Figure 4. MitoROS coincides with Slc4a11 knockdown and precedes corneal edema. (A). Representa-
tive MitoSOX staining at 3, 7, and 14 days of Tm treatment. (B). Quantification of MitoSOX staining.
Relative values versus control; mean ± SEM, n = 4, *: p < 0.05.

With evidence for the induction of mitochondrial oxidative stress and c-Src kinase
activation, we used Visomitin to reduce oxidative stress and eCF506 (Src kinase inhibitor)
to inhibit c-Src kinase activity directly in the mouse model via topical delivery. In both
cases, eye drop therapy significantly reduced the increase in corneal thickness induced by
Slc4a11 knockout, indicating that mitochondrial ROS and Src kinase mediated the edema
(Figure 7A). In addition, both drugs significantly inhibited the increase in permeability
(Figure 7B) and lactate accumulation (Figure 7C) induced by Slc4a11 knockout. More-
over, topical Visomitin and eCF506 rescued tight junction (ZO-1) and opposed cortical
cytoskeleton (F-actin) disorganization induced by Slc4a11 knockout (Figure 7D). Further-
more, Visomitin and eCF506 significantly decreased Src phosphorylation in the KO relative
to control PBS drops (Figure 8A), indicating that mitochondrial oxidative stress triggers Src
kinase activation. Both drugs reversed the decrease in Cldn1 levels and decreased Cldn1
tyrosine phosphorylation (Figure 8B,C). The drugs also recovered Slc4a11 KO-induced
decline in MCT2 (Figure 8D) and MCT4 (Figure 8E), and had no effect on MCT1 levels
(Figure 8F).
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Figure 5. Src kinase was activated and Cldn1 tyrosine phosphorylation increased at 14 days post-Tm
treatment. Jess immunofluorescence and quantification of: (A) P(S19)-MLC, n = 9; (B) P-PKCα, n = 3;
(C) P-JNK, n = 3; (D) P-P38Mapk, n = 3, *: p < 0.05.; and (E) Src and P-Src, n = 3, *: p < 0.05. (F) ZO-1
blot from P-tyrosine IP samples: for relative expression calculation, intensity values were normalized
to input values found in the middle panel of Figure 2C and then to control values, n = 3, *: p < 0.05.
(G) Cldn1 blot from P-tyrosine IP samples: for relative expression calculation, intensity values were
normalized to input values found in the upper panel of Figure 2C and then to control values, n = 3,
*: p < 0.05. ns = not significant.
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Figure 6. Ripasudil eye drop therapy had no effect on Slc4a11 KO-induced corneal edema. All
measurements were performed at 14 days post-Tm treatment. (A). Corneal thickness before and
after Ripasudil or PBS eye drop therapy, n = 5 for Ripasudil and n = 4 for control. (B). Relative
endothelial fluorescein permeability upon eye drop therapy, measured after 14 days of Tm treatment,
n = 4 for Tm-PBS, n = 5 for Tm-Ripasudil, n = 3 for control (not treated with Tm), and n = 2 for
EGTA. ***: p < 0.001. ****: p < 0.0001. (C). Representative images of ZO-1 and F-actin after 14 days of
Ripasudil or PBS eye drop therapy and Tm treatment. ns = not significant.
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and n = 2 for EGTA. **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 (C). Stomal lactate content after 14 days 
of Tm; relative values versus control; mean ± SEM: n = 4 for control, Tm-PBS, and Tm-eCF506; and 
n = 5 for Tm-Visomitin. ***: p < 0.001, ****: p < 0.0001. (D). Representative images of ZO-1 and F-actin 
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Figure 7. Visomitin and eCF506 eye drop therapies inhibited Slc4a11 KO-induced corneal edema.
(A). Corneal thickness and ∆CT after Visomitin, eCF506, or PBS eye drop therapy: n = 12 (24 eyes)
for PBS, n = 13 (26 eyes) for Visomitin, and n = 12 (24 eyes) for eCF506. **: p < 0.001,****: p < 0.0001.
(B). Relative endothelial fluorescein permeability upon eye drop therapy measured at 14 days of Tm
treatment: n = 5 for Tm-PBS, Tm-Visomitin, and Tm-eCF506; n = 3 for control (not treated with Tm);
and n = 2 for EGTA. **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 (C). Stomal lactate content after 14 days
of Tm; relative values versus control; mean ± SEM: n = 4 for control, Tm-PBS, and Tm-eCF506; and
n = 5 for Tm-Visomitin. ***: p < 0.001, ****: p < 0.0001. (D). Representative images of ZO-1 and F-actin
after 14 days of Visomitin, eCF506, or PBS eye drop therapy and Tm treatment.



Cells 2023, 12, 1528 13 of 17

1 
 

 

Figure 8. Visomitin and eCF506 eye drop therapy inhibited Src kinase and rescued expression of
Cldn1, MCT2, and MCT4 after 14 days of Tm. Jess immunoassays and quantifications are shown.
(A) P-Src, n = 3, *: p < 0.05, **: p < 0.01. (B) Cldn1, n = 3, **: p < 0.01, ****: p < 0.0001. (C) Cldn1 blot
from P-tyrosine IP samples. For relative expression calculation, intensity values were normalized to
input values found in B and then to control values, n = 3, *: p < 0.05. (D) MCT2, n = 3, *: p < 0.05,
***: p < 0.001. (E). MCT4, n = 3, *: p < 0.05. (F). MCT1, n = 3. ns = not significant.

4. Discussion

In the current study, we found that mitochondrial oxidative stress precedes the de-
velopment of edema in the inducible Slc4a11 KO. Pump function is altered by decreased
levels of MCT2 and MCT4 and reduced Na+-K+ ATPase activity, leading to lactate accumu-
lation in the stroma. Furthermore, barrier function is altered, as indicated by the elevated
fluorescein permeability, the breakdown of the tight junction and cortical cytoskeleton,
the reduction in Claudin 1 levels, and the increased Cldn1 tyrosine phosphorylation via
activation of the c-Src kinase. MitoROS (i.e., superoxide) and Src Kinase appeared to be the
main players in the onset of edema, as they were inhibited by Visomitin and eCF506.

Oxidative stress is the main contributor to the pathophysiological process of FECD
and CHED [25–27]. In the Slc4a11 KO, the lack of NH3-activated mitochondrial uncoupling
hyperpolarizes the mitochondrial membrane potential, leading to excessive superoxide
production [3]. In the inducible KO, Visomitin eye drop therapy successfully reverted the
edema, indicating that MitoROS is the primary cause of the phenotype. This is consistent
with previous data showing a reduction in corneal edema in the conventional KO using
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MitoQ (a mitochondrial targeted antioxidant) i.p. [9] along with Dimethyl αketoglutarate
(bypass glutaminolysis, which reduces MitoROS) topical therapy [3]. Visomitin has been
shown to improve dry eye symptoms [28,29], and may be a good candidate for topical
treatment in CHED or FECD.

Src is implicated in the tyrosine phosphorylation of ZO-1, Cldns, Ocldn, E-cadherin,
N-cadherin, β-catenin, and other proteins of tight and adherens junctions [14–16]. Src
kinase tyrosine phosphorylation can produce degradation or mislocalization of the junction
components [14,15]. We found that Src kinase was activated in the KO concomitant with
decreased Cldn1 expression, but increased Cldn1 phosphorylation. The increased fluores-
cein permeability, the disorganization of the tight junctions and cortical cytoskeleton, the
tyrosine phosphorylation, and the decreased levels of Cldn1 were all reverted by Src kinase
inhibitor topical therapy. Src kinase is known to be activated upon oxidative stress and
to impair the barrier function by tyrosine phosphorylation of tight and adherens junction
proteins, resulting in their degradation or mislocalization in colon and bile duct epithelial
cells [14–16]. Hydrogen peroxide directly activates Src by Tyrosine sulfenylation, which
leads to Tyrosine 416 phosphorylation and activation [30], as is consistent with our finding
in the corneal endothelium that Src kinase activation disrupts tight junctions.

ZO-1 localization was altered, as observed by immunofluorescence. However, ZO-1
levels increased, as was tested by Western blot. This increase may be a compensatory
response to tight junction disruption, as observed for tight junction proteins in intestinal
epithelium [31]. ZO-1 tyrosine phosphorylation decreased in Slc4a11 KO, indicating that
the Src kinase is unlikely to drive changes in ZO-1 localization.

The mechanism by which Slc4a11 KO-induced mitoROS leads to decreased MCT
expression is unknown. We did not expect protection of the pump function (MCT2 and
MTC4 expression and lactate levels) by Src inhibition. Src can increase TCA cycle and
OXPHOS activity, resulting in increased mitochondrial ROS production [32]. Therefore, Src
inhibition could have decreased ROS production in our model. While the transcription
factor Nrf2 is activated by ROS and stimulates the transcription of anti-oxidative genes,
Nrf2 is disabled in Slc4a11 KO [19], possibly due to mitochondrial dysfunction, which may
have a secondary effect on MCTs expression.

As is consistent with the lack of activation of ROCK, topical Ripasudil treatment had
no protective effect on corneal edema in the Slc4a11 KO mice. Contrary to our observation,
Rock and p38 MAP kinase are associated with disruption of the barrier function upon
oxidative stress in vitro [13]. Ripasudil has been found to protect the endothelium and
promote wound healing after treatment of FECD patients with Descemet stripping only,
as well as in patients after cataract surgery [33,34]. ROCK inhibitor Y-27632 increased the
efficiency of cell-based FECD therapy [35]. In our study, we found no activation of the
ROCK, PKCα, JNK, or p38 MAP kinases in the Slc4a11 KO CHED model.

5. Conclusions

Figure 9 summarizes the sequence of events leading up to formation of corneal edema.
Slc4a11 deficiency increases the protons’ motive force, producing excess MitoROS. ROS
directly activates the Src kinase, which phosphorylates tight and adherens junction pro-
teins, leading to their degradation or mislocalization. Cortical cytoskeleton alterations are
induced as a secondary response, and the end result is a perturbation of the barrier function.
The mitochondrial antioxidant Visomitin or the Src kinase inhibitor eCF506 can rescue
this process. The specific mechanism of impairment of MCT cotransporter expression and
Na+-K+ ATPase activity, a feature of this model [12,36], via oxidative stress is unknown,
and will require further study.
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ROS directly activate Src kinase, phosphorylating tyrosine residues of tight and adherens junction 
proteins and leading to their degradation and/or mis-localization. Cortical cytoskeleton alterations 
are induced as a secondary response. The result is perturbation of the barrier function. ROS and Src 
kinase activation also lead to downregulation of MCT2 and MCT4, as well as decreased Na+-K+-
ATPase activity with subsequent stromal lactate accumulation, resulting in failure of the corneal 
endothelial pump. The end result is corneal edema. 
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