Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = flawed excavated-mass aggregates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5224 KB  
Article
Research on the Strengthening Mechanism of Flawed Excavated-Mass Aggregate and Concrete Properties Considering the Infiltration Path and Crystallization Process
by Mengliang Li, Miao Lv, Hao Bai, Zhaolun Ran and Xinxin Li
Buildings 2026, 16(2), 255; https://doi.org/10.3390/buildings16020255 - 7 Jan 2026
Viewed by 27
Abstract
The use of flawed excavated-mass aggregates produced from crushing and screening hydraulic engineering waste in concrete projects can reduce natural resource extraction, increase waste utilization rates, and minimize environmental pollution. However, the direct application of flawed excavated-mass aggregates is limited due to their [...] Read more.
The use of flawed excavated-mass aggregates produced from crushing and screening hydraulic engineering waste in concrete projects can reduce natural resource extraction, increase waste utilization rates, and minimize environmental pollution. However, the direct application of flawed excavated-mass aggregates is limited due to their high crushing index and water absorption rate. Therefore, this paper measures the multi-dimensional physical and mechanical properties of defective aggregates. A strengthening slurry is prepared by comprehensively modifying the crystallization strength and penetration path of sodium silicate solution using various chemical reagents. The strengthening mechanism of the slurry on flawed excavated-mass aggregates is analyzed using SEM and MIP tests. Concrete tests are designed to investigate the workability and mechanical properties of flawed excavated-mass aggregate concrete. The pore structure of the ITZ (Interfacial Transition Zone) in defective aggregate concrete is analyzed through BSE (Backscattered Electron) imaging to elucidate the strengthening mechanism of secondary crystallization reactions on the ITZ. The research findings can provide technical support for repairing aggregates with defects. Full article
Show Figures

Figure 1

Back to TopTop