Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = flavopereirine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1772 KiB  
Article
Flavopereirine Inhibits Autophagy via the AKT/p38 MAPK Signaling Pathway in MDA-MB-231 Cells
by Ming-Shan Chen, Hsuan-Te Yeh, Yi-Zhen Li, Wen-Chun Lin, Ying-Ray Lee, Ya-Shih Tseng and Shew-Meei Sheu
Int. J. Mol. Sci. 2020, 21(15), 5362; https://doi.org/10.3390/ijms21155362 - 28 Jul 2020
Cited by 14 | Viewed by 4503
Abstract
Autophagy is a potential target for the treatment of triple negative breast cancer (TNBC). Because of a lack of targeted therapies for TNBC, it is vital to find optimal agents that avoid chemoresistance and metastasis. Flavopereirine has anti-proliferation ability in cancer cells, but [...] Read more.
Autophagy is a potential target for the treatment of triple negative breast cancer (TNBC). Because of a lack of targeted therapies for TNBC, it is vital to find optimal agents that avoid chemoresistance and metastasis. Flavopereirine has anti-proliferation ability in cancer cells, but whether it regulates autophagy in breast cancer cells remains unclear. A Premo™ Tandem Autophagy Sensor Kit was used to image the stage at which flavopereirine affects autophagy by confocal microscopy. A plasmid that constitutively expresses p-AKT and siRNA targeting p38 mitogen-activated protein kinase (MAPK) was used to confirm the related signaling pathways by Western blot. We found that flavopereirine induced microtubule-associated protein 1 light chain 3 (LC3)-II accumulation in a dose- and time-dependent manner in MDA-MB-231 cells. Confocal florescent images showed that flavopereirine blocked autophagosome fusion with lysosomes. Western blotting showed that flavopereirine directly suppressed p-AKT levels and mammalian target of rapamycin (mTOR) translation. Recovery of AKT phosphorylation decreased the level of p-p38 MAPK and LC3-II, but not mTOR. Moreover, flavopereirine-induced LC3-II accumulation was partially reduced in MDA-MB-231 cells that were transfected with p38 MAPK siRNA. Overall, flavopereirine blocked autophagy via LC3-II accumulation in autophagosomes, which was mediated by the AKT/p38 MAPK signaling pathway. Full article
(This article belongs to the Special Issue Autophagy in Health, Ageing and Disease 2.0)
Show Figures

Figure 1

15 pages, 5951 KiB  
Article
Flavopereirine Suppresses the Growth of Colorectal Cancer Cells through P53 Signaling Dependence
by Jhy-Ming Li, Yun-Ching Huang, Yi-Hung Kuo, Chih-Chung Cheng, Feng-Che Kuan, Shun-Fu Chang, Ying-Ray Lee, Chih-Chien Chin and Chung-Sheng Shi
Cancers 2019, 11(7), 1034; https://doi.org/10.3390/cancers11071034 - 22 Jul 2019
Cited by 18 | Viewed by 5361
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. The outcome of CRC patients remains poor. Thus, a new strategy for CRC treatment is urgently needed. Flavopereirine is a β-carboline alkaloid extracted from Geissospermum vellosii, which can reduce the [...] Read more.
Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. The outcome of CRC patients remains poor. Thus, a new strategy for CRC treatment is urgently needed. Flavopereirine is a β-carboline alkaloid extracted from Geissospermum vellosii, which can reduce the viability of various cancer cells through an unknown mode of action. The aim of the present study was to investigate the functional mechanism and therapeutic potential of flavopereirine on CRC cells in vitro and in vivo. Our data showed that flavopereirine significantly lowered cellular viability, caused intrinsic and extrinsic apoptosis, and induced G2/M-phase cell cycle arrest in CRC cells. Flavopereirine downregulated Janus kinases-signal transducers and activators of transcription (JAKs-STATs) and cellular myelocytomatosis (c-Myc) signaling in CRC cells. In contrast, the enforced expressions of constitutive active STAT3 and c-Myc could not restore flavopereirine-induced viability reduction. Moreover, flavopereirine enhanced P53 expression and phosphorylation in CRC cells. CRC cells with P53 knockout or loss-of-function mutation significantly diminished flavopereirine-mediated viability reduction, indicating that P53 activity plays a major role in flavopereirine-mediated CRC cell growth suppression. Flavopereirine also significantly repressed CRC cell xenograft growth in vivo by upregulating P53 and P21 and inducing apoptosis. In conclusion, flavopereirine-mediated growth suppression in CRC cells depended on the P53-P21, but not the JAKs-STATs-c-Myc signaling pathway. The present study suggests that flavopereirine may be efficacious in the clinical treatment of CRC harboring functional P53 signaling. Full article
(This article belongs to the Special Issue Colorectal Cancers)
Show Figures

Figure 1

13 pages, 1798 KiB  
Article
Flavopereirine—An Alkaloid Derived from Geissospermum vellosii—Presents Leishmanicidal Activity In Vitro
by João Victor da Silva e Silva, Helliton Patrick Cordovil Brigido, Kelly Cristina Oliveira de Albuquerque, Josiwander Miranda Carvalho, Jordano Ferreira Reis, Lara Vinhal Faria, Márlia Regina Coelho-Ferreira, Fernando Tobias Silveira, Agnaldo da Silva Carneiro, Sandro Percário, Andrey Moacir do Rosário Marinho and Maria Fâni Dolabela
Molecules 2019, 24(4), 785; https://doi.org/10.3390/molecules24040785 - 21 Feb 2019
Cited by 19 | Viewed by 5150
Abstract
Chemotherapy is limited in the treatment of leishmaniasis due to the toxic effects of drugs, low efficacy of alternative treatments, and resistance of the parasite. This work assesses the in vitro activity of flavopereirine on promastigote cultures of Leishmania amazonensis. In addition, [...] Read more.
Chemotherapy is limited in the treatment of leishmaniasis due to the toxic effects of drugs, low efficacy of alternative treatments, and resistance of the parasite. This work assesses the in vitro activity of flavopereirine on promastigote cultures of Leishmania amazonensis. In addition, an in silico evaluation of the physicochemical characteristics of this alkaloid is performed. The extract and fractions were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid identified by NMR. The antileishmanial activity and cytotoxicity were assayed by cell viability test (MTT). The theoretical molecular properties were calculated on the Molinspiration website. The fractionation made it possible to isolate a beta-carboline alkaloid (flavopereirine) in the alkaloid fraction. Moreover, it led to obtaining a fraction with greater antileishmanial activity, since flavopereirine is very active. Regarding the exposure time, a greater inhibitory effect of flavopereirine was observed at 24 h and 72 h (IC50 of 0.23 and 0.15 μg/mL, respectively). The extract, fractions, and flavopereirine presented low toxicity, with high selectivity for the alkaloid. Furthermore, flavopereirine showed no violation of Lipinski’s rule of five, showing even better results than the known inhibitor of oligopeptidase B, antipain, with three violations. Flavopereirine also interacted with residue Tyr-499 of oligopeptidase B during the molecular dynamics simulations, giving a few insights of a possible favorable mechanism of interaction and a possible inhibitory pathway. Flavopereirine proved to be a promising molecule for its antileishmanial activity. Full article
(This article belongs to the Special Issue Natural Product Pharmacology and Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop