Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = flame photometric detector (FPD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 28820 KiB  
Review
Advances in Food Aroma Analysis: Extraction, Separation, and Quantification Techniques
by Dandan Pu, Zikang Xu, Baoguo Sun, Yanbo Wang, Jialiang Xu and Yuyu Zhang
Foods 2025, 14(8), 1302; https://doi.org/10.3390/foods14081302 - 9 Apr 2025
Cited by 3 | Viewed by 1902
Abstract
Decoding the aroma composition plays a key role in designing and producing foods that consumers prefer. Due to the complex matrix and diverse aroma compounds of foods, isolation and quantitative analytical methods were systematically reviewed. Selecting suitable and complementary aroma extraction methods based [...] Read more.
Decoding the aroma composition plays a key role in designing and producing foods that consumers prefer. Due to the complex matrix and diverse aroma compounds of foods, isolation and quantitative analytical methods were systematically reviewed. Selecting suitable and complementary aroma extraction methods based on their characteristics can provide more complete aroma composition information. Multiple mass spectrometry detectors (MS, MS/MS, TOF-MS, IMS) and specialized detectors, including flame ionization detector (FID), electron capture detector (ECD), nitrogen–phosphorus detector (NPD), and flame photometric detector (FPD), are the most important qualitative technologies in aroma identification and quantification. Furthermore, the real-time monitoring of aroma release and perception is an important developing trend in the aroma perception of future food. A combination of artificial intelligence for chromatographic analysis and characteristic databases could significantly improve the qualitative analysis efficiency and accuracy of aroma analysis. External standard method and stable isotope dilution analysis were the most popular quantification methods among the four quantification methods. The combination with flavoromics enables the decoding of aroma profile contributions and the identification of characteristic marker aroma compounds. Aroma analysis has a wide range of applications in the fields of raw materials selection, food processing monitoring, and products quality control. Full article
Show Figures

Figure 1

9 pages, 1682 KiB  
Communication
Characteristic Evaluation of Gas Chromatography with Different Detectors for Accurate Determination of Sulfur Hexafluoride
by Susu Pan, Tiqiang Zhang, Guocheng Zhang, Zhenqi Yang, Duan Feng, Zhikuan Zhou and Xuelei Ning
Molecules 2024, 29(4), 787; https://doi.org/10.3390/molecules29040787 - 8 Feb 2024
Cited by 1 | Viewed by 1714
Abstract
Sulfur hexafluoride (SF6), which survives in the atmosphere for an extremely long period of time, is the most potent greenhouse gas regulated under the Kyoto Protocol. So, the accurate monitoring of atmospheric SF6 plays an important role in the study [...] Read more.
Sulfur hexafluoride (SF6), which survives in the atmosphere for an extremely long period of time, is the most potent greenhouse gas regulated under the Kyoto Protocol. So, the accurate monitoring of atmospheric SF6 plays an important role in the study of the control policies for reducing greenhouse gas emissions. The instruments for SF6 measurement are typically calibrated using certified reference materials. The concentrations of the commercially available SF6 reference materials usually have a broad range, from 1 μmol/mol to 6000 μmol/mol. Some characteristics including sensitivity, linear range, relative standard deviation, and accuracy are crucial for the determination of SF6 in such a broad concentration range. Therefore, the selection of a proper detector for the accurate determination of SF6 with such a broad range is extremely important to establish a gas chromatography (GC) method for developing SF6 reference materials. In this paper, several typical GC methods with different detectors, including a thermal conductivity detector (TCD), a pulsed discharge helium ionization detector (PDHID), and a flame photometric detector (FPD), were carefully established for the accurate determination of SF6 with different concentrations. The results show that an FPD detector has a relatively narrow linearity range, thus a quadratic equation should be established for building a calibration curve. The PDHID and TCD have good linearity with coefficients of 1.0000 in the concentration range of 10–100 μmol/mol (using a PDHID), and 100–1000 μmol/mol (using a TCD), respectively. Further considering the measurement errors of indication results, the PDHID is suitable for SF6 measurement when the concentrations are below 100 μmol/mol, whereas the TCD is suitable for SF6 measurement when the concentrations are over 100 μmol/mol. These results provide useful guidance in choosing an appropriate GC detector for the accurate determination of SF6, which are especially very helpful for developing SF6 reference materials. Full article
Show Figures

Figure 1

14 pages, 2400 KiB  
Article
Aroma Characterization of Roasted Meat and Meat Substitutes Using Gas Chromatography–Mass Spectrometry with Simultaneous Selective Detection and a Dedicated Software Tool, AromaMS
by Nitzan Tzanani, Ariel Hindi and Dana Marder
Molecules 2023, 28(9), 3973; https://doi.org/10.3390/molecules28093973 - 8 May 2023
Viewed by 2442
Abstract
The development of healthier and more sustainable food products, such as plant-based meat substitutes (PBMSs), have received significant interest in recent years. A thorough understanding of the aroma composition can support efforts to improve the sensory properties of PBMS products and promote their [...] Read more.
The development of healthier and more sustainable food products, such as plant-based meat substitutes (PBMSs), have received significant interest in recent years. A thorough understanding of the aroma composition can support efforts to improve the sensory properties of PBMS products and promote their consumer acceptability. Here, we developed an integrated hardware and software approach for aroma analysis of roasted food based on simultaneous analysis with three complementary detectors. Following the standard procedure of aroma headspace sampling and separation using solid-phase microextraction-gas chromatography, the column flow was split into three channels for the following detectors for the selective detection of nitrogen and sulfur (N/S)-containing compounds: an electron ionization-mass spectrometry for identification through a library search, a nitrogen-phosphorous detector, and a flame-photometric detector (FPD)/pulsed-FPD. Integration of results from the different types of detectors was achieved using a software tool, called AromaMS, developed in-house for data processing. As stipulated by the user, AromaMS performed either non-targeted screening for all volatile organic compounds (VOCs) or selective screening for N/S-containing VOCs that play a major role in the aroma experience. User-defined parameters for library matching and the retention index were applied to further eliminate false identifications. This new approach was successfully applied for comparative analysis of roasted meat and PBMS samples. Full article
(This article belongs to the Special Issue Analysis of Volatile and Odor Compounds in Foods—Second Edition)
Show Figures

Figure 1

17 pages, 919 KiB  
Article
Characterization of the Key Aroma Compounds in Three Truffle Varieties from China by Flavoromics Approach
by Tao Feng, Mengzhu Shui, Shiqing Song, Haining Zhuang, Min Sun and Lingyun Yao
Molecules 2019, 24(18), 3305; https://doi.org/10.3390/molecules24183305 - 11 Sep 2019
Cited by 46 | Viewed by 5737
Abstract
The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas [...] Read more.
The volatile compounds of three different fresh-picked truffle varieties (Tuber sinensis, T1, Tuber sinoalbidum, T2 and Tuber sinoexcavatum, T3) were extracted by headspace solid-phase microextraction (HS-SPME). Separation and identification of volatile components and sulfur compounds were investigated by gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC–MS) and gas chromatography with flame photometric detection (GC-FPD). The results showed that 44, 43 and 44 volatile compounds were detected in T1, T2 and T3 samples, respectively. In addition, 9, 10 and 9 sulfur compounds were identified in three samples by GC-FPD, respectively. Combining physicochemical and sensory properties, T1 presented fatty, green and rotten cabbage odor; T2 exhibited mushroom, sulfuric and musty odor notes; T3 had nutty, floral and roasted potato odor. Dimethyl sulfide, 3-methylbutanal, dimethyl disulfide, 3-octanone, bis(methylthio) methane, octanal, 1-octen-3-one, 1-octen-3-ol and benzeneacetaldehyde played indispensable roles in the overall aroma of three truffles. Finally, based on quantitative concentration in T1, odorous compounds (OAV) > 1 were mixed to recombine aroma, demonstrating that these key aroma compounds based on OAV can successfully recombine pretty similar aroma of each variety. Full article
(This article belongs to the Special Issue Recent Advances in Food and Natural Product Analysis)
Show Figures

Graphical abstract

Back to TopTop