Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = finite-replicated organisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5499 KB  
Article
A Programmable Finite-Replicated Organism Framework for Balanced Safety and Functionality
by Mengyuan Wang, Pei Du, Fankang Meng, Wenhui Zhang, Yanhui Xiang, Qiong Wu and Chunbo Lou
Life 2025, 15(9), 1381; https://doi.org/10.3390/life15091381 - 1 Sep 2025
Viewed by 1050
Abstract
Live-attenuated vaccines face a critical challenge in balancing immunogenicity with safety. To address this, we engineered programmable finite-replicated organisms (FROs) by depositing a limited number of indispensable components (such as noncanonical amino acids, ncAAs) within the cell, consuming the coenabling precise control of [...] Read more.
Live-attenuated vaccines face a critical challenge in balancing immunogenicity with safety. To address this, we engineered programmable finite-replicated organisms (FROs) by depositing a limited number of indispensable components (such as noncanonical amino acids, ncAAs) within the cell, consuming the coenabling precise control of bacterial replication capability while preserving antigenic breadth. Two strategies were adopted to achieve the following purposes: (1) encoding ncAA in essential genes; (2) encoding ncAA in antitoxin of toxin–antitoxin (TA) systems. As noncanonical amino acids, 3,5-dichlorotyrosine (Cl2Y) was encoded by the amber codon (TAG) and inserted into the essential genes (e.g., serS, murG, and dnaA) or antitoxin genes. After optimizing expression and the number of amber codons in the storage genes, the FRO cells can grow up to six generations, achieving amplification approaching 100 times after depletion of the ncAA in the growth medium. The escape frequencies are 10−5 to 10−7, which need to be optimized by combining multiple storage genes in the same genome in the future. This work holds the potential to amplify the amounts of antigens for vaccines, potentially accelerating the development of next-generation vaccines against antibiotic-resistant threats. Full article
(This article belongs to the Special Issue Synthetic Genetic Elements, Devices, and Systems: 2nd Edition)
Show Figures

Figure 1

32 pages, 26848 KB  
Article
The Development of a Robust Rigid–Flexible Interface and Continuum Model for an Elephant’s Trunk Using Hybrid Coordinate Formulations
by Ahmed Ghoneimy, Mohamed O. Helmy, Ayman Nada and Ahmed El-Assal
Appl. Syst. Innov. 2025, 8(2), 42; https://doi.org/10.3390/asi8020042 - 24 Mar 2025
Cited by 1 | Viewed by 1739
Abstract
The goal of this study was to construct a mathematical and computational model that accurately represents the complex, flexible movements and mechanics of an elephant’s trunk. Rather than serving as a biological study, the elephant trunk model was used as an application to [...] Read more.
The goal of this study was to construct a mathematical and computational model that accurately represents the complex, flexible movements and mechanics of an elephant’s trunk. Rather than serving as a biological study, the elephant trunk model was used as an application to demonstrate the effectiveness of a proposed rigid–flexible coupling framework. This model has broader applications beyond understanding the mechanics of an elephant trunk, including its potential use in designing flexible robotic systems and prosthetics, as well as contributions to the fields of biomechanics and animal locomotion. An elephant’s trunk, a highly flexible and muscular organ without bones, is best modeled using continuum mechanics to capture the dynamic behavior of its motion. Given the rigid body nature of an elephant’s head movement and the highly flexible nature of the trunk, a robust geometric framework for the rigid–flexible interface is crucial to accurately capture the complex interactions, force transmission, and dynamic behavior arising from their distinct motion characteristics and differing coordinate representations. Under the umbrella of flexible multibody dynamics, this study introduced a hybrid coordinate system, integrating the Natural Coordinates Formulation (NCF) and the Absolute Nodal Coordinates Formulation (ANCF), to establish the geometric constraints governing the interaction between the rigid body (the head) and the highly flexible body (the trunk). Moreover, the model illustrates how forces and moments are transmitted between these components in both direct and inverse scenarios. Various finite elements were evaluated to identify suitable elements for modeling the elephant’s trunk. The model’s accuracy was validated through simulations of bending, twisting, compression, and other characteristic trunk movements. The solution method is presented alongside the simulation analysis for various motion scenarios, providing a comprehensive framework for understanding and replicating the trunk’s complex dynamics. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

19 pages, 7555 KB  
Article
Enhancement of Light Extraction Efficiency Using Wavy-Patterned PDMS Substrates
by Jian Cheng Bi, Kyo-Cheol Kang, Jun-Young Park, Junbeom Song, Ji-Sung Lee, Hyejung Lim, Young Wook Park and Byeong-Kwon Ju
Nanomaterials 2025, 15(3), 198; https://doi.org/10.3390/nano15030198 - 27 Jan 2025
Cited by 3 | Viewed by 3242
Abstract
This study introduces an organic light-emitting diode (OLED) light extraction method using a wavy-patterned polydimethylsiloxane (PDMS) substrate created via oxygen (O2) plasma treatment. A rapid fabrication process adjusted the flow, pressure, duration, and power of the O2 plasma treatment to [...] Read more.
This study introduces an organic light-emitting diode (OLED) light extraction method using a wavy-patterned polydimethylsiloxane (PDMS) substrate created via oxygen (O2) plasma treatment. A rapid fabrication process adjusted the flow, pressure, duration, and power of the O2 plasma treatment to replicate the desired wavy structure. This method allowed the treated samples to maintain over 90% total transmittance and enabled controlled haze adjustments from 10% to 70%. Finite-difference time-domain (FDTD) simulations were employed to determine optimal amplitudes and periods for the wavy structure to maximize optical performance. Further experiments demonstrated that bottom-emitting green fluorescent OLEDs constructed on these substrates achieved an external quantum efficiency (EQE) of 3.5%, representing a 97% improvement compared to planar PDMS OLEDs. Additionally, color purity variation was minimized to 0.044, and the peak wavelength shift was limited to 10 nm, ensuring consistent color purity and intensity even at wide viewing angles. This study demonstrates the potential of this cost-effective and efficient method in advancing high-quality display. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Graphical abstract

12 pages, 521 KB  
Article
Targeted Metabolomics: The LC-MS/MS Based Quantification of the Metabolites Involved in the Methylation Biochemical Pathways
by Georgia Ntasi, Anthony Tsarbopoulos, Emmanuel Mikros and Evagelos Gikas
Metabolites 2021, 11(7), 416; https://doi.org/10.3390/metabo11070416 - 24 Jun 2021
Cited by 8 | Viewed by 5652
Abstract
Biochemical methylation reactions mediate the transfer of the methyl group regulating vital biochemical reactions implicated in various diseases as well as the methylation of DNA regulating the replication processes occurring in living organisms. As a finite number of methyl carriers are involved in [...] Read more.
Biochemical methylation reactions mediate the transfer of the methyl group regulating vital biochemical reactions implicated in various diseases as well as the methylation of DNA regulating the replication processes occurring in living organisms. As a finite number of methyl carriers are involved in the methyl transfer, their quantification could aid towards the assessment of an organism’s methylation potential. An Hydrophilic Interaction Chromatography-Liquid Chromatography Multiple Reaction Monitoring (HILIC-LC-MRM) mass spectrometry (MS) methodology was developed and validated according to Food & Drug Administration (FDA), European Medicines Agency (EMA), and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) for the simultaneous determination of nine metabolites i.e., B12, folic acid, 5-methyltetrahydrofolate, S-adenosylmethionine, S-adenosylhomocysteine, betaine, phosphocholine, N,N-dimethylglycine, and deoxythymidine monophosphate in human blood plasma. The sample pretreatment was based on a single step Solid-phase extraction (SPE) methodology using C18 cartridges. The methodology was found to accurately quantitate the analytes under investigation according to the corresponding dynamic range proposed in the literature for each analyte. The applicability of the method was assessed using blood donor samples and its applicability demonstrated by the assessment of their basal levels, which were shown to agree with the established basal levels. The methodology can be used for diagnostic purposes as well as for epigenetic screening. Full article
(This article belongs to the Special Issue Analysis and Metabolism of Bioactive Compounds)
Show Figures

Figure 1

20 pages, 758 KB  
Article
Formulation of Biochar-Based Phosphorus Fertilizer and Its Impact on Both Soil Properties and Chickpea Growth Performance
by Farman Wali, Muhammad Naveed, Muhammad Asaad Bashir, Muhammad Asif, Zulfiqar Ahmad, Jawaher Alkahtani, Mona S. Alwahibi and Mohamed Soliman Elshikh
Sustainability 2020, 12(22), 9528; https://doi.org/10.3390/su12229528 - 16 Nov 2020
Cited by 30 | Viewed by 6025
Abstract
There is no alternative to phosphorus (P) in agriculture as it is second most important plant nutrient after nitrogen. Mineral P fertilizers are derived from rock phosphate (RP) which is finite, non-renewable and geographically restricted to a few countries, thus its shortage likely [...] Read more.
There is no alternative to phosphorus (P) in agriculture as it is second most important plant nutrient after nitrogen. Mineral P fertilizers are derived from rock phosphate (RP) which is finite, non-renewable and geographically restricted to a few countries, thus its shortage likely affects agriculture in near future as the world population is growing at a greater pace. This could increase P inputs in agriculture in order to meet rising food demands which may result in the depletion of RP reserves. Furthermore, P losses from farmlands in case of mineral P fertilizers also demands the sustainable use of P not only because of its finite resources but also the environmental concerns associated with P fertilization such as eutrophication. The present study was designed to formulate biochar-based P fertilizer that would help in the sustainable use of P fertilizer. Biochar(s) were prepared using wheat straw at 350–400 °C pyrolytic temperature followed by enrichment with Di-ammonium phosphate (DAP) taking into account all possible combination of DAP to biochar on the w/w basis (0:100, 25:75, 50:50, 75:25 and 100:0). Enrichment was carried out using two different methods i.e., phosphorus enriched biochar (PEB1) by hot method and cold method (PEB2). An incubation experiment was performed to assess the impact of each biochar on selected properties of soil. The treatments were organized in factorial arrangement under complete randomized design (CRD) with three replications. Both the amendments were applied at rate of 1% of dry soil on a w/w basis. A significant increase in soil extractable P and total nitrogen (N) was recorded for the ratio 50:50 as compared to control as well of rest of treatments. Similarly, high organic contents were found for both PEB1 and PEB2 at the ratio 50:50. An incubation experiment was followed by pot trial using 50:50 for both PEB1 and PEB2 and split doses of recommended P were applied (0%, 25%, 50% and 100%) with a control under CRD with three replications using chickpea as test crop. Both PEB1 and PEB2 with 50% P have significantly improved crop growth, yield, nodulation, and plant physiological and chemical parameters as compared to a recommended dose of P alone. The result may imply that the integration of P-enriched biochar and chemical fertilizer could be an effective approach to improve chickpea production and soil properties. Full article
(This article belongs to the Special Issue Sustainable Soil Health Management)
Show Figures

Figure 1

Back to TopTop