Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = fine-root ingrowth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4336 KiB  
Article
Fine Roots in Hemiboreal Forest Stands and Clearcut Areas with Nutrient-Rich Organic Soils in Latvia: Morphological Traits, Production and Carbon Input
by Andis Lazdiņš, Guna Petaja, Arta Bārdule, Kaspars Polmanis, Santa Kalēja, Oksana Maliarenko and Nadiia Melnik
Forests 2024, 15(9), 1500; https://doi.org/10.3390/f15091500 - 27 Aug 2024
Cited by 1 | Viewed by 1123
Abstract
Within this study, we evaluated the fine root (trees and understory vegetation combined) morphological traits, fine root production (FRP), and carbon (C) input with fine root litter in forest stands (dominated by either coniferous or deciduous trees) and clearcut areas (previously dominated by [...] Read more.
Within this study, we evaluated the fine root (trees and understory vegetation combined) morphological traits, fine root production (FRP), and carbon (C) input with fine root litter in forest stands (dominated by either coniferous or deciduous trees) and clearcut areas (previously dominated by coniferous trees) with nutrient-rich organic soils. The study was conducted in 26 sites in hemiboreal forest land in Latvia and summarizes the results obtained in a two-year study (2020–2022) using the root ingrowth method. Traits and production of fine roots varied significantly depending on forest development stage (stand or clearcut area), dominant tree species type (coniferous or deciduous), and soil drainage status (drained or naturally wet). According to the results of the second study year, mean FRP among groups of study sites varied from 0.58 ± 0.13 to 1.38 ± 0.28 t ha−1 yr−1, while C input with fine root litter ranged from 0.28 ± 0.06 to 0.68 ± 0.14 t C ha−1 yr−1. More than half (59 ± 4%) of the total FRP occurred in the upper 0–20 cm soil layer. FRP tended to correlate positively with soil C/N ratio and negatively with soil pH and soil nutrient concentration. Incubating ingrowth cores for at least two years is strongly recommended to accurately estimate annual FRP and C input. This helps to avoid potential underestimation that may occur when using results of only one incubation year (12 months after ingrowth core installation). This study provided new insights into the dynamics and traits of fine roots and will help to improve the accuracy of C flow estimation in hemiboreal forests with nutrient-rich organic soils in Latvia. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 2431 KiB  
Article
Effects of Tree Species Diversity on Fine Root Morphological Characteristics, Productivity and Turnover Rates
by Zhibao Wang, Yongli Cai, Jing Liang, Qicheng Zhong, Hong Jiang, Xinghui Lu, Xiangbin Gao, Shouchao Yu and Xiaojian Dai
Forests 2022, 13(10), 1740; https://doi.org/10.3390/f13101740 - 21 Oct 2022
Cited by 1 | Viewed by 2546
Abstract
Fine roots (φ ≤ 2 mm) play an important role in the process of material and nutrient cycling in forest ecosystems, but the effect of tree species diversity on the functional characteristics of fine roots is unclear. In this study, 1−7 subtropical communities [...] Read more.
Fine roots (φ ≤ 2 mm) play an important role in the process of material and nutrient cycling in forest ecosystems, but the effect of tree species diversity on the functional characteristics of fine roots is unclear. In this study, 1−7 subtropical communities with different species richness were selected to study the morphological characteristics, productivity (PRO), and turnover rate (TUR) of fine roots by continuous soil core extraction, ingrowth soil core method, and root analysis system. The effects of tree species diversity on fine root morphological characteristics, PRO, and TUR are also analyzed. The results showed that with the increase in tree species diversity in the community, the effect of fine root morphological characteristics including specific root length (SRL) and specific surface area (SSA) of each community was not significant, but the fine root PRO in the community increased from 71.63 g·m−2·a−1 (Ligustrum lucidum pure forest) to 232.95 g·m−2·a−1 (Cinnamomum camphora mixed forest with seven species richness communities), and the fine root TUR increased from 0.539 times·a−1 to 0.747 times·a−1. Correlation analysis and redundancy analysis showed that species richness, root functional traits, and soil physicochemical properties were important driving factors affecting root characteristics. The increase in tree species diversity did not change the morphological characteristics of fine roots but increased the PRO and TUR of fine roots. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

14 pages, 1090 KiB  
Article
Herbaceous and Woody Root Biomass, Seasonal Changes in Root Turnover, and Arbuscular Mycorrhizal and Ectomycorrhizal Colonization during Primary Succession in Post-Mining Sites
by Satoshi Kaneda, Petra Zedníková and Jan Frouz
Diversity 2022, 14(8), 644; https://doi.org/10.3390/d14080644 - 11 Aug 2022
Cited by 4 | Viewed by 2204
Abstract
Seasonal changes in the biomass and length of fine roots and their growth into ingrowth cores were measured in a chronosequence of post-mining sites represented by 6-, 16-, 22-, and 45-year-old study sites, located on spoil heaps after brown coal mining in the [...] Read more.
Seasonal changes in the biomass and length of fine roots and their growth into ingrowth cores were measured in a chronosequence of post-mining sites represented by 6-, 16-, 22-, and 45-year-old study sites, located on spoil heaps after brown coal mining in the Sokolov coal mining district. The depth distribution of roots differed between herbs and woody species and also with succession age. At the 22-year-old site, the greatest root biomass was found in the fermentation layer (248.9 ± 113.4 g m2) and decreased with depth. In the case of herbaceous root biomass, the greatest root biomass was found in the 16-year-old site (63.7 ± 15.2 g m2), again in the fermentation layer, which decreased with depth. Overall root biomass increased with succession age, reaching its highest value in the 45-year-old site. In younger sites, the root biomass was dominated by herbs and grasses, whereas woody roots dominated in older sites. After one year, the root biomass in ingrowth cores reached up to one quarter of in situ biomass, which would suggest a low turnover rate. However, the difference between the minimum and the maximum value during the course of one year represents more than half of the mean value. Analysis of the number of arbuscules on roots of Plantago lanceolata sown in soil from all succession stages revealed extensive colonization by arbuscular mycorrhizal fungi in early succession (14.2 ± 0.3 mm root−1), decreasing with succession age, and reaching the lowest value in the 22-year-old site (2.4 ± 0.08 mm root−1) before increasing in the oldest site. Colonization of roots by ectomycorrhizal fungi increased with succession age, reaching a maximum in the 16-year-old site. In comparison with the extent of ectomycorrhizal colonization in relation to root length, the greatest length of ectomycorrhiza-colonized roots was found in the 22-year-old site; hence, the pattern was the opposite of the one observed in arbuscular mycorrhiza-colonized roots. Full article
(This article belongs to the Special Issue Soil Ecosystem Restoration after Disturbances)
Show Figures

Figure 1

13 pages, 3175 KiB  
Article
Fine Root Production and Soil Available Nutrients in Rubber Monoculture versus Rubber–Flemingia macrophylla Agroforestry
by Farkhanda Bibi, Kyle W. Tomlinson, Chenggang Liu, Chang’an Liu, Yanqiang Jin and Jianwei Tang
Forests 2022, 13(6), 830; https://doi.org/10.3390/f13060830 - 26 May 2022
Cited by 3 | Viewed by 2627
Abstract
In the present study, we examined fine root production and soil available nutrients (N, P and K) across different soil depths in rubber monoculture and rubber–Flemingia macrophylla agroforestry of different stand ages. We used the ingrowth cores method and sampled 360 soil [...] Read more.
In the present study, we examined fine root production and soil available nutrients (N, P and K) across different soil depths in rubber monoculture and rubber–Flemingia macrophylla agroforestry of different stand ages. We used the ingrowth cores method and sampled 360 soil cores over four growth intervals, representing one year of growth for the present study. The results showed that root production and macronutrient concentrations generally decreased with increasing soil depth. Total fine root production was comparatively high in the youngest stand age (12 years) rubber monoculture; a similar trend was observed for the soil available P and K, but available N was greater in older than younger stand ages. Root growth and soil available P and K were all lower in the agroforestry system than the monoculture. Significant differences in fine root production with stand ages, management system and seasons suggest that fine root responses to the soil available nutrients are vital to understanding the precise response of above- and belowground biomass to environmental changes. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

11 pages, 3204 KiB  
Article
Biomass Allocation to Resource Acquisition Compartments Is Affected by Tree Density Manipulation in European Beech after Three Decades
by Bohdan Konôpka, Milan Barna, Michal Bosela and Martin Lukac
Forests 2020, 11(9), 940; https://doi.org/10.3390/f11090940 - 27 Aug 2020
Cited by 3 | Viewed by 2969
Abstract
This study reports on an investigation of fine root and foliage productivity in forest stands dominated by European beech (Fagus sylvatica L.) and exposed to contrasting intensities of mature forest harvesting. The main aim of this study was to consider the long-term [...] Read more.
This study reports on an investigation of fine root and foliage productivity in forest stands dominated by European beech (Fagus sylvatica L.) and exposed to contrasting intensities of mature forest harvesting. The main aim of this study was to consider the long-term effects of canopy manipulation on resource acquisition biomass compartments in beech. We made use of an experiment established in 1989, when five different light availability treatments were started in plots within a uniform forest stand, ranging from no reduction in tree density to full mature forest removal. We measured fine root standing stock in the 0–30 cm soil layer by coring in 2013 and then followed annual fine root production (in-growth cores) and foliage production (litter baskets) in 2013–2015. We found that the plot where the tree density was reduced by 30% had the lowest foliage and the highest fine root production. In 2013, this plot had the highest fine root turnover rate (0.8 year−1), while this indicator of fine root dynamics was much lower in the other four treatments (around 0.3 year−1). We also found that the annual fine root production represented around two thirds of annual foliage growth on the mass basis in all treatments. While our findings support the maintenance of source and sink balance in woody plants, we also found a long-lasting effect of tree density manipulation on investment into resource acquisition compartments in beech forests. Full article
(This article belongs to the Special Issue Forest Stand Management and Biomass Growth)
Show Figures

Figure 1

12 pages, 7070 KiB  
Article
Root Responses of Five Japanese Afforestation Species to Waterlogging
by Saki Fujita, Kyotaro Noguchi and Takeshi Tange
Forests 2020, 11(5), 552; https://doi.org/10.3390/f11050552 - 14 May 2020
Cited by 15 | Viewed by 3096
Abstract
The increase of waterlogged environments is of recent concern due to changes in precipitation regimes and the frequent occurrence of extreme rainfall events. Therefore, it is necessary to comprehend the effects and responses of waterlogging for a better understanding of forests and urban [...] Read more.
The increase of waterlogged environments is of recent concern due to changes in precipitation regimes and the frequent occurrence of extreme rainfall events. Therefore, it is necessary to comprehend the effects and responses of waterlogging for a better understanding of forests and urban afforestation under changing environments. We investigated root responses of five Japanese afforestation species (Pinus thunbergii, Acer mono, Quercus serrata, Alnus hirsuta and Fraxinus mandshurica) to waterlogging. Potted seedlings grown under natural conditions were waterlogged at soil-surface level for 2.5 months during the growing season. The in-growth core method was used to distinctively measure root growth. As a result, fine root growth during the waterlogging period was significantly decreased for P. thunbergii, A. mono and Q. serrata. Furthermore, root tissue density (RTD) of pre-existing roots was decreased, which suggests root damage such as partial root death and root decay. On the other hand, for A. hirsuta and F. mandshurica, fine root growth was not decreased under waterlogging. For A. hirsuta, although fine root growth continued at the top half, it was decreased at the bottom half. Root damage such as a decrease in RTD was observed for pre-existing roots. For F. mandshurica, root growth continued at the top and bottom half, and root damage of pre-existing roots was not observed at either the top or the bottom. From our results, it was suggested that P. thunbergii was most sensitive, followed by A. mono and Q. serrata. A. hirsuta and F. mandshurica were relatively tolerant; however, the most tolerant was F. mandshurica, as pre-existing roots were not damaged by waterlogging. Overall, root responses could be grouped into three groups: (1) P. thunbergii, A. mono, Q. serrata; (2) A. hirsuta; (3) F. mandshurica. The observed responses may reflect the species’ natural distributions. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

13 pages, 1815 KiB  
Article
Estimating Fine Root Production from Ingrowth Cores and Decomposed Roots in a Bornean Tropical Rainforest
by Ayumi Katayama, Lip Khoon Kho, Naoki Makita, Tomonori Kume, Kazuho Matsumoto and Mizue Ohashi
Forests 2019, 10(1), 36; https://doi.org/10.3390/f10010036 - 7 Jan 2019
Cited by 20 | Viewed by 5236
Abstract
Research highlights: Estimates of fine root production using ingrowth cores are strongly influenced by decomposed roots in the cores during the incubation period and should be accounted for when calculating fine root production (FRP). Background and Objectives: The ingrowth core method [...] Read more.
Research highlights: Estimates of fine root production using ingrowth cores are strongly influenced by decomposed roots in the cores during the incubation period and should be accounted for when calculating fine root production (FRP). Background and Objectives: The ingrowth core method is often used to estimate fine root production; however, decomposed roots are often overlooked in estimates of FRP. Uncertainty remains on how long ingrowth cores should be installed and how FRP should be calculated in tropical forests. Here, we aimed to estimate FRP by taking decomposed fine roots into consideration. Specifically, we compared FRP estimates at different sampling intervals and using different calculation methods in a tropical rainforest in Borneo. Materials and Methods: Ingrowth cores were installed with root litter bags and collected after 3, 6, 12 and 24 months. FRP was estimated based on (1) the difference in biomass at different sampling times (differential method) and (2) sampled biomass at just one sampling time (simple method). Results: Using the differential method, FRP was estimated at 447.4 ± 67.4 g m−2 year−1 after 12 months, with decomposed fine roots accounting for 25% of FRP. Using the simple method, FRP was slightly higher than that in the differential method after 12 months (516.3 ± 45.0 g m−2 year−1). FRP estimates for both calculation methods using data obtained in the first half of the year were much higher than those using data after 12-months of installation, because of the rapid increase in fine root biomass and necromass after installation. Conclusions: Therefore, FRP estimates vary with the timing of sampling, calculation method and presence of decomposed roots. Overall, the ratio of net primary production (NPP) of fine roots to total NPP in this study was higher than that previously reported in the Neotropics, indicating high belowground carbon allocation in this forest. Full article
(This article belongs to the Special Issue Rhizosphere Dynamics under Global Change)
Show Figures

Figure 1

21 pages, 1580 KiB  
Article
Fine Root Dynamics in Afromontane Forest and Adjacent Land Uses in the Northwest Ethiopian Highlands
by Dessie Assefa, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2017, 8(7), 249; https://doi.org/10.3390/f8070249 - 13 Jul 2017
Cited by 14 | Viewed by 5937
Abstract
Fine roots are a major pathway of C input into soils. The aim of this study was to quantify fine root stocks, production and turnover in natural forest and land use systems converted from forests in Ethiopia. The study was conducted in a [...] Read more.
Fine roots are a major pathway of C input into soils. The aim of this study was to quantify fine root stocks, production and turnover in natural forest and land use systems converted from forests in Ethiopia. The study was conducted in a remnant Afromontane forest, eucalyptus plantation and grass and cropland in NW Ethiopia. Fine root dynamics were investigated using three different methods: sequential coring, in-growth cores and in-growth nets. Soil cores for sequential analyses were taken in quarterly intervals, while in-growth cores and nets were harvested corresponding to 1-, 2-, 3-, 4-, 5-, 8- and 12-month interval. Fine root stocks averaged 564, 425, 56 and 46 g·m−2 in the forest, eucalyptus, grazing land and cropland ecosystems, respectively. The values decreased exponentially with increasing soil depth. In forest and eucalyptus, fine root biomass and necromass were highest in the dry season. Estimates of fine root production differed according to the method used. Fine root production based on in-growth coring averaged 468, 293, 70 and 52 g m−2·year−1. In general, land use conversion from forest to open lands reduced fine root production by 85–91%. The turnover rate of fine roots was 1.5 for forest and 2.1 for eucalyptus plantation. Full article
(This article belongs to the Special Issue Forest Fine Roots in Changing Climate)
Show Figures

Figure 1

9 pages, 169 KiB  
Article
Ecological Impact on Nitrogen and Phosphorus Cycling of a Widespread Fast-growing Leguminous Tropical Forest Plantation Tree Species, Acacia mangium
by Masahiro Inagaki and Shigehiro Ishizuka
Diversity 2011, 3(4), 712-720; https://doi.org/10.3390/d3040712 - 28 Nov 2011
Cited by 8 | Viewed by 7236
Abstract
Symbiotic nitrogen fixation is one of the major pathways of N input to forest ecosystems, enriching N availability, particularly in lowland tropics. Recently there is growing concern regarding the wide areas of fast-growing leguminous plantations that could alter global N2O emissions. [...] Read more.
Symbiotic nitrogen fixation is one of the major pathways of N input to forest ecosystems, enriching N availability, particularly in lowland tropics. Recently there is growing concern regarding the wide areas of fast-growing leguminous plantations that could alter global N2O emissions. Here, we highlight substantially different N and phosphorus utilization and cycling at a plantation of Acacia mangium, which is N2-fixing and one of the major plantation species in tropical/subtropical Asia. The litterfall, fresh leaf quality and fine-root ingrowth of A. mangium were compared to those of non-N2-fixing Swietenia macrophylla and coniferous Araucaria cunninghamii in wet tropical climates in Borneo, Malaysia. The N and P concentrations of the A. mangium fresh leaves were higher than those of the other two species, whereas the P concentration in the leaf-litterfall of A. mangium was less than half that of the others; in contrast the N concentration was higher. The N:P ratio in the A. mangium leaf was markedly increased from fresh-leaf (29) to leaf-litterfall (81). Although the N flux in the total litterfall at the A. mangium plantation was large, the fine-root ingrowth of A. mangium significantly increased by applying both N and P. In conclusion, large quantities of N were accumulated and returned to the forest floor in A. mangium plantation, while its P resorption capacity was efficient. Such large N cycling and restricted P cycling in wide areas of monoculture A. mangium plantations may alter N and P cycling and their balance in the organic layer and soil on a stand level. Full article
(This article belongs to the Special Issue Biodiversity and Forest Dynamics and Functions)
Show Figures

Back to TopTop